Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

The mechanism of the effect of aspirin on human platelets. I. Acetylation of a particulate fraction protein.
G J Roth, P W Majerus
G J Roth, P W Majerus
Published September 1, 1975
Citation Information: J Clin Invest. 1975;56(3):624-632. https://doi.org/10.1172/JCI108132.
View: Text | PDF
Research Article Article has an altmetric score of 21

The mechanism of the effect of aspirin on human platelets. I. Acetylation of a particulate fraction protein.

  • Text
  • PDF
Abstract

Aspirin (acetylsalicylic acid) inhibits platelet prostaglandin synthesis and the ADP- and collagen-induced platelet release reaction. The mechanism of the inhibitory effect is unknown but may involve protein acetylation, since aspirin acetylates a variety of substrates, including platelet protein. We have examined the relationship between protein acetylation and aspirin's physiologic effect on platelets. Suspensions of washed human platelets were incubated at 37 degrees C with (3H)aspirin, and incorporation of radioactivity into protein was analyzed by sodium dodecyl sulfate polyacrylamide gel electrophoresis. Exposure to (acetyl-3H)aspirin but not (aromatic ring-3H)aspirin resulted in radioactive labeling of three platelet proteins, suggesting that the drug acetylates these three proteins. The acetylation of two of the proteins (located in the supernatant fraction) was not saturable, implying that these reactions may not be physiologically significant. Acetylation of the third protein, approximate mol wt 85,000 (located in the particulate fraction), saturated at an aspirin concentration of 30 muM and was complete within 20 min. Platelets prepared from aspirin-treated donors did not incorporate any (acetyl-3H)aspirin radioactivity into the particulate protein for 2 days after drug treatment and did not show full pretreatment uptake of radioactivity for 12 days thereafter. The course of increasing incorporation of (acetyl-3H)aspirin radioactivity parralleled that of platelet turnover. Therefore, in addition to its saturability, acetylation of the particulate fraction protein by aspirin was permanent. In two respects, the inhibition of platelet function by aspirin correlates well with the aspirin-mediated acetylation of the particulate fraction protein. Both persist for the life-span of the aspirin-treated platelet, and both occur at a similar saturating aspirin concentration. The evidence suggests that the physiologic effect of aspirin on human platelets is produced by acetylation of a single protein located in the particulate fraction. The acetylated protein may be related to cyclo-oxygenase, the prostaglandin G2 biosynthetic enzyme.

Authors

G J Roth, P W Majerus

×

Usage data is cumulative from June 2024 through June 2025.

Usage JCI PMC
Text version 914 52
PDF 117 910
Scanned page 423 6
Citation downloads 77 0
Totals 1,531 968
Total Views 2,499
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts

Referenced in 9 patents
Referenced in 1 Wikipedia pages
Referenced in 4 clinical guideline sources
106 readers on Mendeley
See more details