Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI108111

Deoxyribonucleic acid strandedness. Partial characterization of the antigenic regions binding antibodies in lupus erythematosus serum.

R J Samaha and W S Irvin

Find articles by Samaha, R. in: PubMed | Google Scholar

Find articles by Irvin, W. in: PubMed | Google Scholar

Published August 1, 1975 - More info

Published in Volume 56, Issue 2 on August 1, 1975
J Clin Invest. 1975;56(2):446–457. https://doi.org/10.1172/JCI108111.
© 1975 The American Society for Clinical Investigation
Published August 1, 1975 - Version history
View PDF
Abstract

This study shows that tritiated thymidine labeled DNA prepared from mammalian cells by the Marmur technique is a pure preparation of nucleic acid that is composed essentially of two populations of molecules. One molecular population consists of primarily double-standed nucleic acid, while the other population is of double-stranded nucleic acid with significant single-stranded regions. The double-stranded DNA with single-stranded regions can, depending upon the length of the single strand, behave as "native" DNA or "denatured" DNA on methylated albumin kieselguhr (MAK) column chromatography, Using MAK chromatography we have separated the DNA into a saltelutable fraction composed of primarily double-stranded molecules and an alkaline-elutable fraction containing double-stranded nucleic acid with variable length, single-stranded regions. Endonuclease enzyme removal of the single-stranded regions from the alkaline fraction DNA yield nucleic acid that behaves identically to the salt elutable DNA. Exonuclease removal of the single-stranded regions suggests they are located primarily at the ends of the molecules. Our data show that the alkaline-elutable DNA differs from salt-elutable DNA only in that the former has significant single-stranded regions. Sera of patients with systemic lupus erythematosus (SLE) selected for anti-DNA by hemagglutination bind significantly less to the alkaline fraction DNA than the sale fraction DNA. This difference in binding clearly does not represent simply an affinity for double-stranded vs. single-stranded nucleic acid since the alkaline fraction DNA contains predominately double-stranded nucleic acid. A model for antibody-DNA binding is suggested from the present data and information contained in the literature.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 446
page 446
icon of scanned page 447
page 447
icon of scanned page 448
page 448
icon of scanned page 449
page 449
icon of scanned page 450
page 450
icon of scanned page 451
page 451
icon of scanned page 452
page 452
icon of scanned page 453
page 453
icon of scanned page 454
page 454
icon of scanned page 455
page 455
icon of scanned page 456
page 456
icon of scanned page 457
page 457
Version history
  • Version 1 (August 1, 1975): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts