Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article (127)

Advertisement

Research Article Free access | 10.1172/JCI108105

Clarification of the site of action of chlorothiazide in the rat nephron.

R T Kunau Jr, D R Weller, and H L Webb

Find articles by Kunau, R. in: JCI | PubMed | Google Scholar

Find articles by Weller, D. in: JCI | PubMed | Google Scholar

Find articles by Webb, H. in: JCI | PubMed | Google Scholar

Published August 1, 1975 - More info

Published in Volume 56, Issue 2 on August 1, 1975
J Clin Invest. 1975;56(2):401–407. https://doi.org/10.1172/JCI108105.
© 1975 The American Society for Clinical Investigation
Published August 1, 1975 - Version history
View PDF
Abstract

The saluretic effect of the thiazide diuretics has been attributed to inhibition of sodium reabsorption in the distal nephron of the kidney. Recent micropuncture studies have shown, however, that chlorothiazide administration can also inhibit sodium reabsorption in the proximal convolution. To clarify the site of the saluretic effect of chlorothiazide, these micropuncture studies examined the effect of chlorothiazide on chloride transport in the nephron. The effect of chlorothiazide on chloride transport was studied because chlorothiazide's effectiveness as a saluretic is largely due to its ability to enhance sodium chloride excretion; if only changes in sodium transport are examined, it would be then difficult to determine if sodium as bicarbonate or as chloride is affected, since chlorothiazide can inhibit carbonic anhydrase. One group of rats was studied before and after 15 mg/kg per h chlorothiazide. For comparison, another group of rats was studied before and after 2 mg/kg per h benzolamide, a carbonic anhydrase inhibitor. Fractional chloride delivery from the proximal tubule was similarly increased in both groups from 59.4 to 71.0% by chlorothiazide administration, Pless than 0.0001, and from 54.3 to 68.2% by benzolamide administration, P less than 0.001. The increased delivery very of chloride from the proximal tubule was largely reabsorbed before the early distal tubule as fractional chloride delivery to this site increased only from 5.08 to 7.40% after chlorothiazide administration, P less than 0.001, and from 4.50 to 6.29% after benzolamide administration, P less than 0.01. Benzolamide had no effect on chloride reabsorption in the distal convoluted tubule. However, chlorothiazide administration resulted in a marked decrease in distal tubular chloride reabsorption, the fraction of filtered chloride present at the late distal tubule incresing from 1.24 to 6.25%, P less than 0.001. Fractional chloride excretion in the urine increased from 0.29 to 3.44%, P less than 0.001, after chlorothiazide, but did not change after benzolamide. The influence of chlorothiazide on proximal chloride transport presumably is related to its ability to inhibit renal carbonic anhydrase. However, it is not the effect of chlorothiazide in the proximal convolution but rather its effect in the distal convoluted tubule which is primarily responsible for its ability to be an effective saliuretic.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 401
page 401
icon of scanned page 402
page 402
icon of scanned page 403
page 403
icon of scanned page 404
page 404
icon of scanned page 405
page 405
icon of scanned page 406
page 406
icon of scanned page 407
page 407
Version history
  • Version 1 (August 1, 1975): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article (127)

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts