Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI108046

Characteristics of salt and water transport in superficial and juxtamedullary straight segments of proximal tubules.

S Kawamura, M Imai, D W Seldin, and J P Kukko

Find articles by Kawamura, S. in: JCI | PubMed | Google Scholar

Find articles by Imai, M. in: JCI | PubMed | Google Scholar

Find articles by Seldin, D. in: JCI | PubMed | Google Scholar

Find articles by Kukko, J. in: JCI | PubMed | Google Scholar

Published June 1, 1975 - More info

Published in Volume 55, Issue 6 on June 1, 1975
J Clin Invest. 1975;55(6):1269–1277. https://doi.org/10.1172/JCI108046.
© 1975 The American Society for Clinical Investigation
Published June 1, 1975 - Version history
View PDF
Abstract

The purpose of the present studies was to characterize the nature of salt and water transport out of the superficial (SF) and juxtamedullary (JM) straight segments of rabbit proximal tubules as examined by in vitro microperfusion techniques. When the perfusate consisted of a solution simulating ultrafiltrate of plasma, there were no differences between SF and JM straight tubules in either net reabsorption of fluid (SF=0.47 nl/mm per min; JM=0.56 nl/mm per min) or in transtubular potential difference (PD) (SF=-2.1 mV; JM=-1.8 mV). Removal of glucose and alanine from the perfusate had no effect on the magnitude of the PD in either straight segment. Ouabain decreased both the net reabsorptive rates and the PD. Isosmolal replacement of NaCL by Na-cyclamate (a presumed impermeant anion) in the perfusate and the bath caused an increase in luminal negativity in both segments wheras similar substitution of NaCL by choline-CL (nontransported cation) changed the PD TO NEAR ZERO. These studies, therefore, suggest that sodium is transported out of the proximal straight tubules by an active noncoupled process that generates a PD (electrogenic process). When the perfusate consisted of a solution with a high chloride concentration (resulting from greater HCO3 than CI reabsorption in the proximal convoluted tubule), different PDs in SF and JM tubules were generated: SF=+1.6 plus or minus 0.2 mV; JM=-1.3 plus or minus 0.3 mV. This difference in PD was attributed to relative differences in Na and CI permeabilities in these two segments. Electrophysiological and isotopic estimates of the chloride to sodium permeability revealed that the SF tubule is about twice as permeant to chloride than to sodium whereas the JM tubules are approximately twice as permeant to sodium than to chloride. It is concluded that the mechanism of active sodium transport in the straight segment of proximal tubule differs from that of the convoluted segment and that both the SF and JM straight segments differ from each other with respect os sodium and chloride permeability.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 1269
page 1269
icon of scanned page 1270
page 1270
icon of scanned page 1271
page 1271
icon of scanned page 1272
page 1272
icon of scanned page 1273
page 1273
icon of scanned page 1274
page 1274
icon of scanned page 1275
page 1275
icon of scanned page 1276
page 1276
icon of scanned page 1277
page 1277
Version history
  • Version 1 (June 1, 1975): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts