Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI107964

Globin synthesis in fractionated Normoblasts of beta-thalassemia heterozygotes.

W G Wood and G Stamatoyannopoulos

Department of Medicine, University of Washington, Seattle , Washington 98195.

Find articles by Wood, W. in: JCI | PubMed | Google Scholar

Department of Medicine, University of Washington, Seattle , Washington 98195.

Find articles by Stamatoyannopoulos, G. in: JCI | PubMed | Google Scholar

Published March 1, 1975 - More info

Published in Volume 55, Issue 3 on March 1, 1975
J Clin Invest. 1975;55(3):567–578. https://doi.org/10.1172/JCI107964.
© 1975 The American Society for Clinical Investigation
Published March 1, 1975 - Version history
View PDF
Abstract

Globin chain synthesis was examined in erythroid cells of increasing maturity, fractionated from the whole bone marrow of beta-thalassemia heterozygotes by a density gradient centrifugation procedure. In experiments using total cell "globin," a gradient of alpha/beta chain ratios was observed, increasing with erythroid cell maturation from unity in the basophilic cells up to 2.0 in reticulocytes. Gel filtration of the lysates from these marrow fractions revealed the presence of free alpha chains even in the most immature cells, the amount of which increased with erythroid cell age; the total alpha/beta ratio derived from gel filtration experiments showed a gradient similar to that observed in the total globin experiments. However, the alpha/beta ratio of the hemoglobin fraction obtained by gel filtration remained constant throughout maturation at an average of 0.65. This latter finding is incompatible with balanced synthesis at any stage of red cell development and excludes the possibility that total beta chain production is higher in the early cells than in the later cells or that alpha chain production in the early cells is reduced to the level of beta chain synthesis. Furthermore, in a Hb S/beta-thalassemia marrow examined, the beta A/beta S ratio remained constant throughout maturation while the alpha/non-alpha ratio showed an increase like that observed in the simple beta-thalassemia heterozygotes. This argues strongly against increased synthesis from either the thalassemic or nonthalassemic beta chain gene being responsible for the balanced synthesis in the immature cells. These findings lead us to suggest that, in beta-thalassemia heterozygotes, a large alpha chain pool is present throughout erythroid cell maturation and that the observed increase in alpha/beta ratios is a function of the ability of those cells to degrade the excess alpha chains.

Images.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 567
page 567
icon of scanned page 568
page 568
icon of scanned page 569
page 569
icon of scanned page 570
page 570
icon of scanned page 571
page 571
icon of scanned page 572
page 572
icon of scanned page 573
page 573
icon of scanned page 574
page 574
icon of scanned page 575
page 575
icon of scanned page 576
page 576
icon of scanned page 577
page 577
icon of scanned page 578
page 578
Version history
  • Version 1 (March 1, 1975): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts