Human lysosomes were isolated from normal peripheral blood leukoyctes and characterized by electron microscopy, enzyme analysis, and assays for DNA and RNA. Stored sera from 37 unselected patients with systemic lupus erythematosus (SLE), including active and inactive, treated and untreated cases, were tested in complement fixation (CF) reactions with these lysosome preparations. 23 SLE sera exhibited positive CR reactions, as did sera from two patients with "lupoid" hepatitis. The seven SLE sera with strongest CF reactivity also demonstrated gel precipitin reactions with lysosomes. Neither CF nor precipitin reactions with lysosomes were observed with normal sera or with sera of patients with drug-induced lupus syndrome, rheumatoid arthritis (RA), polymyositis, or autoimmune hemolytic anemia. By several criteria the antilysosome CF and precipitin reactions of SLE sera cound not be attributed to antibody to DNA, RNA, or other intracellular organelles. The lysosomal component reactive with SLE sera in CF assays was sedimentable at high speed and is presumably membrane associated. The CF activity of two representative SLE sera was associated with IgG globulins by Sephadex filtration. A search for lysosomal antigen in SLE and related disorders was also made. By employing rabbit antiserum to human lysosomes in immunodiffusion, a soluble lysosomal component, apparently distinct from the sedimentable (membrane-associated) antigen described above, was identified in serum, synovial fluid, or pleural fluid from patients with SLE, RA, ankylosing spondylitis, and leukemoid reaction. An antigenically identical soluble component reactive with the rabbit antiserum could be released in vitro from intact lysosomes by repeated freeze-thaw cycles..
D A Bell, P A Thiem, J H Vaughan, J P Leddy
Usage data is cumulative from May 2024 through May 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 116 | 0 |
45 | 13 | |
Figure | 0 | 2 |
Scanned page | 494 | 2 |
Citation downloads | 61 | 0 |
Totals | 716 | 17 |
Total Views | 733 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.