Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
Article has an altmetric score of 6

See more details

Referenced in 1 policy sources
Referenced in 18 patents
21 readers on Mendeley
  • Article usage
  • Citations to this article (102)

Advertisement

Research Article Free access | 10.1172/JCI107915

Partial characterization and purification of a rabbit granulocyte factor that increases permeability of Escherichia coli.

J Weiss, R C Franson, S Beckerdite, K Schmeidler, and P Elsbach

Find articles by Weiss, J. in: PubMed | Google Scholar

Find articles by Franson, R. in: PubMed | Google Scholar

Find articles by Beckerdite, S. in: PubMed | Google Scholar

Find articles by Schmeidler, K. in: PubMed | Google Scholar

Find articles by Elsbach, P. in: PubMed | Google Scholar

Published January 1, 1975 - More info

Published in Volume 55, Issue 1 on January 1, 1975
J Clin Invest. 1975;55(1):33–42. https://doi.org/10.1172/JCI107915.
© 1975 The American Society for Clinical Investigation
Published January 1, 1975 - Version history
View PDF
Abstract

Recently we reported that rapid killing of Escherichia coli by granulocytes or granulocyte fractions is accompanied by an equally rapid and discrete increase in permeability of the microbial envelope (Beckerdite, Mooney, Weiss, Franson, and Elsbach. 1974. J. Exp. Med. 140: 396-409). Most of this permeability-increasing activity (PI) is found in a crude granule preparation. PI is quantitatively recovered in a 23,000-g supernatant fraction (Sup II) after sulfuric acid extraction of granulocyte homogenates prepared in water. PI is nondialyzable, destroyed by pronase and trypsin, stable at 4degreesC for at least 2 mo, and destroyed by heating at 94degreesC. Anionic substances, such as heparin sulfate and isolated E. coli lipopolysaccharide, bind to and inhibit PI. PI has been purified up to 1,000-fold from homogenate in a yield of 50percent by acid extraction and carboxymethyl-Sephadex chromatography. Such purified fractions have bactericidal activity that equals that of disrupted granulocytes and Sup II, are similarly enriched with respect to granule-associated phospholipase, and protease activities. Whereas E. coli, sensitive to PI, binds or inactivates solubilized PI, a resistant strain of Serratia marcescens does not. Binding of PI to sensitive microorganisms seems to be necessary for expression of its biological activity since both the apparent binding to and the biological effect of PI on E. coli are completely blocked by 10-20 mM Mg2+ or Ca2+. Mg2+ or Ca2+ can reverse the effect on E. coli permeability produced by Sup II or the carboxymethyl-Sephadex fraction but not that produced by granulocyte homogenate. The close association of bactericidal, phospholipase A2, and permeability-increasing activities towards several gram-negative bacterial species suggests that they may be related.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 33
page 33
icon of scanned page 34
page 34
icon of scanned page 35
page 35
icon of scanned page 36
page 36
icon of scanned page 37
page 37
icon of scanned page 38
page 38
icon of scanned page 39
page 39
icon of scanned page 40
page 40
icon of scanned page 41
page 41
icon of scanned page 42
page 42
Version history
  • Version 1 (January 1, 1975): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

Article has an altmetric score of 6
  • Article usage
  • Citations to this article (102)

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts

Referenced in 1 policy sources
Referenced in 18 patents
21 readers on Mendeley
See more details