Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI107899

The effect of pressure or flow stress on right ventricular protein synthesis in the face of constant and restricted coronary perfusion.

S S Schreiber, M A Rothschild, C Evans, F Reff, and M Oratz

Find articles by Schreiber, S. in: PubMed | Google Scholar

Find articles by Rothschild, M. in: PubMed | Google Scholar

Find articles by Evans, C. in: PubMed | Google Scholar

Find articles by Reff, F. in: PubMed | Google Scholar

Find articles by Oratz, M. in: PubMed | Google Scholar

Published January 1, 1975 - More info

Published in Volume 55, Issue 1 on January 1, 1975
J Clin Invest. 1975;55(1):1–11. https://doi.org/10.1172/JCI107899.
© 1975 The American Society for Clinical Investigation
Published January 1, 1975 - Version history
View PDF
Abstract

Cardiac stress produced by hypertension or excess volume loading results in different types of hypertrophy. Elevated left ventricular pressure rapidly results in increased myocardial protein synthesis in vivo and in vitro, but such rapid alterations are not consistently seen in volume loading. The difference in response is difficult to clarify since it is not possible to effect alterations in left ventricular pressure or perfusion without profoundly affecting coronary perfusion. The present study describes cardiac protein synthesis in the right ventricle of the young guinea pig heart in vitro by utilizing a perfusion model in which the right ventricle could be stressed by elevations of pressure or volume loading in the presence of constant and restricted coronary perfusion. With coronary flow maintained at 4 ml/min per heart equivalent to 25 ml/min/g dry wt, an increase in right ventricular pressure from normal levels of 3 mm Hg to 11 mm Hg resulted in a 60 percent increase of myocardial incorporation of (14C)lysine into protein. However, with further increases of right ventricular pressure to 22 mm Hg, protein synthesis dropped back to normal levels. The falloff in protein synthesis was not due to decreased contractility, alterations in intracellular lysine pool specific activity, or alterations in distribution of coronary flow. a 60 percent increase in coronary perfusion was again associated with a similar response of protein synthesis to progressive elevations of pressure despite a rise in the ATP levels and a fall in lactate production. Thus, a deficiency of O2 did not entirely explain the decline of protein synthesis with maximal pressures. At all levels of coronary perfusion, volume loading for 3 h did not result in increased protein incorporation of (14C)lysine. The studies support a relationship between ventricular pressure and protein synthesis unrelated to coronary flow per se. A pressure receptor triggering protein synthesis within the ventricular wall is postulated. Such a relationship is not apparent in short-term volume loading in vitro.

Images.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 1
page 1
icon of scanned page 2
page 2
icon of scanned page 3
page 3
icon of scanned page 4
page 4
icon of scanned page 5
page 5
icon of scanned page 6
page 6
icon of scanned page 7
page 7
icon of scanned page 8
page 8
icon of scanned page 9
page 9
icon of scanned page 10
page 10
icon of scanned page 11
page 11
Version history
  • Version 1 (January 1, 1975): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts