Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article (106)

Advertisement

Research Article Free access | 10.1172/JCI107878

Decreased Insulin Binding to Lymphocytes from Diabetic Subjects

Jerrold M. Olefsky and Gerald M. Reaven

Department of Medicine, Stanford University School of Medicine, Palo Alto, California 94304

Department of Medicine, Veterans Administration Hospital, Palo Alto, California 94304

Find articles by Olefsky, J. in: PubMed | Google Scholar

Department of Medicine, Stanford University School of Medicine, Palo Alto, California 94304

Department of Medicine, Veterans Administration Hospital, Palo Alto, California 94304

Find articles by Reaven, G. in: PubMed | Google Scholar

Published December 1, 1974 - More info

Published in Volume 54, Issue 6 on December 1, 1974
J Clin Invest. 1974;54(6):1323–1328. https://doi.org/10.1172/JCI107878.
© 1974 The American Society for Clinical Investigation
Published December 1, 1974 - Version history
View PDF
Abstract

We have studied insulin binding to circulating lymphocytes isolated from 20 untreated adult, nonobese, nonketotic, diabetic subjects with fasting hyperglycemia, 20 normal subjects, and four patients with fasting hyperglycemia secondary to chronic pancreatitis. The results of these studies show that lymphocytes from diabetic patients have decreased ability to specificity bind insulin when compared to lymphocytes from normal subjects. For example, when lymphocytes from diabetic patients and a trace amount of [125I]insulin (3.3 × 10-11 M) were incubated, binding was less than 50% of the value obtained with lymphocytes from normal subjects (2±0.2% vs. 4.2±0.4%). Furthermore, the data show that lymphocytes from diabetic patients have only 1,200 insulin receptor sites per cell compared to 2,200 sites per cell for lymphocytes from normal subjects. Competitive inhibition studies using unlabeled insulin indicate that the affinity for insulin of lymphocytes from both groups is comparable. Consequently the decreased insulin binding of diabetics' lymphocytes is primarily due to a decreased number of available receptors rather than decreased binding affinity. This decreased insulin binding is not due to chronic hyperglycemia since insulin binding to lymphocytes, obtained from four patients with fasting hyperglycemia secondary to chronic pancreatitis, was completely normal. The possibility that some factor present in the plasma of diabetic patients could cause decreased insulin binding also seems unlikely since we could demonstrate no in vitro effects of diabetics' plasma on insulin binding. Lastly, the proportion of lymphocytes which were thymus derived and bone marrow derived were the same in each of the study groups indicating that differences in lymphocyte subpopulations do not account for our results.

In conclusion: (a) lymphocytes from nonobese, untreated, adult diabetic patients with fasting hyperglycemia demonstrate a decreased ability to bind insulin; (b) this decreased insulin binding to lymphocytes obtained from diabetic patients can be accounted for primarily by an absolute decrease in the number of available receptor sites per cell; and (c) these data suggest that this defect in insulin binding is a primary phenomenon.

Images.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 1323
page 1323
icon of scanned page 1324
page 1324
icon of scanned page 1325
page 1325
icon of scanned page 1326
page 1326
icon of scanned page 1327
page 1327
icon of scanned page 1328
page 1328
Version history
  • Version 1 (December 1, 1974): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article (106)

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts