Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article (152)

Advertisement

Research Article Free access | 10.1172/JCI107823

Characterization of the Effects of Arginine and Glucose on Glucagon and Insulin Release from the Perfused Rat Pancreas

John E. Gerich, M. Arthur Charles, and Gerold M. Grodsky

Metabolic Research Unit, University of California, San Francisco, California 94143

Department of Biochemistry and Biophysics, University of California, San Francisco, California 94143

Find articles by Gerich, J. in: PubMed | Google Scholar

Metabolic Research Unit, University of California, San Francisco, California 94143

Department of Biochemistry and Biophysics, University of California, San Francisco, California 94143

Find articles by Charles, M. in: PubMed | Google Scholar

Metabolic Research Unit, University of California, San Francisco, California 94143

Department of Biochemistry and Biophysics, University of California, San Francisco, California 94143

Find articles by Grodsky, G. in: PubMed | Google Scholar

Published October 1, 1974 - More info

Published in Volume 54, Issue 4 on October 1, 1974
J Clin Invest. 1974;54(4):833–841. https://doi.org/10.1172/JCI107823.
© 1974 The American Society for Clinical Investigation
Published October 1, 1974 - Version history
View PDF
Abstract

To characterize the mechanisms by which arginine and glucose affect pancreatic alpha and beta cell function, the effects of these agents over their full dose response, both alone and in various combinations, were studied using the perfused rat pancreas. Arginine (0-38 mM), in the absence of glucose, stimulated biphasic glucagon (IRG) secretion (Km≃3-4 mM) at concentrations less than 1 mM and caused nonphasic insulin (IRI) release (Km≃12-13 mM) but only at concentrations greater than 6 mM. Glucose (0-27.5 mM) alone stimulated biphasic IRI release (Km≃9-10 mM) at concentrations in excess of 5.5 mM and caused nonphasic inhibition of IRG secretion (Kt≃5-6 mM) at concentrations as low as 4.1 mM. These results demonstrate fundamental differences in pancreatic alpha and beta cell secretory patterns in response to glucose and arginine and suggest that glucagon secretion is more sensitive to the effect of both glucose and arginine. Various concentrations of arginine in the presence of 5.5 mM glucose stimulated biphasic IRG and IRI release: IRG responses were diminished and IRI responses were enhanced compared with those seen with arginine in the absence of glucose. Glucose (0-27.5 mM) in the presence of 3.2 or 19.2 mM arginine caused similar inhibition of IRG secretion (Km≃5-6 mM) and stimulation of IRI release (Km≃9-10 mM) as that seen with glucose alone, although greater IRG and IRI release occurred. This augmentation of IRI secretion was greater than that expected from mere additive effects of glucose and arginine. Classical Lineweaver-Burk analysis of these results indicates that glucose is a non-competitive inhibitor arginine-stimulated glucagon secretion and suggests that glucose and arginine affect pancreatic alpha and beta cell function via different mechanisms. In addition, comparison of simultaneous insulin and glucagon secretion patterns under various conditions suggests that endogenous insulin per se has little or no direct effect on IRG secretion and that endogenous glucagon does not appreciably affect pancreatic beta cell function.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 833
page 833
icon of scanned page 834
page 834
icon of scanned page 835
page 835
icon of scanned page 836
page 836
icon of scanned page 837
page 837
icon of scanned page 838
page 838
icon of scanned page 839
page 839
icon of scanned page 840
page 840
icon of scanned page 841
page 841
Version history
  • Version 1 (October 1, 1974): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article (152)

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts