A new method has been developed for measuring virtually continuous distributions of ventilation-perfusion ratios (V̇A/Q̇) based on the steadystate elimination of six gases of different solubilities. The method is applied here to 12 normal subjects, aged 21—60. In nine, the distributions were compared breathing air and 100% oxygen, while in the remaining three, effects of changes in posture were examined. In four young semirecumbent subjects (ages 21—24) the distributions of blood flow and ventilation with respect to V̇A/Q̇ were virtually log-normal with little dispersion (mean log standard deviations 0.43 and 0.35, respectively). The 95.5% range of both blood flow and ventilation was from V̇A/Q̇ ratios of 0.3—2.1, and there was no intrapulmonary shunt (V̇A/Q̇ of 0). On breathing oxygen, a shunt developed in three of these subjects, the mean value being 0.5% of the cardiac output. The five older subjects (ages 39—60) had broader distributions (mean log standard deviations, 0.76 and 0.44) containing areas with V̇A/Q ratios in the range 0.01—0.1 in three subjects. As for the young subjects, there was no shunt breathing air, but all five developed a shunt breathing oxygen (mean value 3.2%), and in one the value was 10.7%. Postural changes were generally those expected from the known effects of gravity, with more ventilation to high VA/Q areas when the subjects were erect than supine. Measurements of the shunt while breathing oxygen, the Bohr CO2 dead space, and the alveolar-arterial oxygen difference were all consistent with the observed distributions. Since the method involves only a short infusion of dissolved inert gases, sampling of arterial blood and expired gas, and measurement of cardiac output and minute ventilation, we conclude that it is well suited to the investigation of pulmonary gas exchange in man.
Peter D. Wagner, Raymond B. Laravuso, Richard R. Uhi, John B. West
Usage data is cumulative from April 2024 through April 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 474 | 81 |
97 | 100 | |
Scanned page | 716 | 63 |
Citation downloads | 81 | 0 |
Totals | 1,368 | 244 |
Total Views | 1,612 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.