Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI107740

Effect of Experimental Pneumococcal Meningitis on Respiration and Circulation in the Rabbit

Malcolm R. Sears, J. Morgan O'Donoghue, H. Kenneth Fisher, and Harry N. Beaty

Department of Medicine, University of Washington, Seattle, Washington 98195

Harborview Medical Center, Seattle, Washington, 98195

Specialized Center of Research-Pulmonary Diseases, University of Washington, Seattle, Washington 98195

Find articles by Sears, M. in: PubMed | Google Scholar

Department of Medicine, University of Washington, Seattle, Washington 98195

Harborview Medical Center, Seattle, Washington, 98195

Specialized Center of Research-Pulmonary Diseases, University of Washington, Seattle, Washington 98195

Find articles by O'Donoghue, J. in: PubMed | Google Scholar

Department of Medicine, University of Washington, Seattle, Washington 98195

Harborview Medical Center, Seattle, Washington, 98195

Specialized Center of Research-Pulmonary Diseases, University of Washington, Seattle, Washington 98195

Find articles by Fisher, H. in: PubMed | Google Scholar

Department of Medicine, University of Washington, Seattle, Washington 98195

Harborview Medical Center, Seattle, Washington, 98195

Specialized Center of Research-Pulmonary Diseases, University of Washington, Seattle, Washington 98195

Find articles by Beaty, H. in: PubMed | Google Scholar

Published July 1, 1974 - More info

Published in Volume 54, Issue 1 on July 1, 1974
J Clin Invest. 1974;54(1):18–23. https://doi.org/10.1172/JCI107740.
© 1974 The American Society for Clinical Investigation
Published July 1, 1974 - Version history
View PDF
Abstract

Pathophysiological studies in bacterial meningitis in man have been limited by clinical variability and the necessity for immediate therapy. After the development of a reliable animal model of pneumococcal meningitis, we studied respiration and circulation in 25 anesthetized New Zealand white rabbits during untreated pneumococcal meningitis and in 33 healthy controls. In meningitis, we found increased lactic acid in cerebrospinal fluid (CSF). Increased ventilation, perhaps due to CSF lactic acid accumulation, resulted in respiratory alkalosis; the concomitant lowering of Pco2 acted as a homeostatic mechanism to restore pH toward normality in the CSF. Hyperventilation increased with the duration of the illness. Cardiac output was also increased with decreased peripheral vascular resistance but with only slight reduction in mean systemic and pulmonary arterial pressures. In the final hour of life, peripheral vascular resistance fell further; ventilation declined and then abruptly ceased while cardiac activity continued. Lactic acid accumulation in the CSF, found in both experimental and human pneumococcal meningitis, may cause the hyperventilation found in this disease and may contribute to death.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 18
page 18
icon of scanned page 19
page 19
icon of scanned page 20
page 20
icon of scanned page 21
page 21
icon of scanned page 22
page 22
icon of scanned page 23
page 23
Version history
  • Version 1 (July 1, 1974): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts