Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

Storage Iron Kinetics. VII. A BIOLOGIC MODEL FOR RETICULOENDOTHELIAL IRON TRANSPORT
Georges Fillet, … , James D. Cook, Clement A. Finch
Georges Fillet, … , James D. Cook, Clement A. Finch
Published June 1, 1974
Citation Information: J Clin Invest. 1974;53(6):1527-1533. https://doi.org/10.1172/JCI107703.
View: Text | PDF
Research Article

Storage Iron Kinetics. VII. A BIOLOGIC MODEL FOR RETICULOENDOTHELIAL IRON TRANSPORT

  • Text
  • PDF
Abstract

The processing of erythrocyte iron by the reticuloendothelial cell has been characterized by kinetic measurements of blood radioactivity made after the intravenous injection of heat-damaged erythrocytes labeled with 59Fe and of transferrin-bound 55Fe. The early reticuloendothelial release of iron, a matter of hours, was calculated from the plasma turnover rate of 55Fe and the plasma reappearance of 59Fe. Late release was calculated from the ratio of the cumulative incorporation of both tracers into the circulating red cell mass over a period of 2 wk. There was an initial processing period within the reticuloendothelial cell, after which radioiron either rapidly returned to circulation (t½ 34 min) or was transferred to a slowly exchanging pool of storage iron within the reticuloendothelial cell (t½ release to plasma of 7 days). These pathways were of equal magnitude in the normal dog. Reticuloendothelial release of iron was largely independent of the pre-existing plasma iron level or transferrin saturation. Diurnal fluctuations in the plasma iron level were shown to be the result of a variable partitioning of iron between the early and late release phases. Acute inflammation resulted in a prompt and marked increase in the fraction of iron stored (late phase), whereas depletion of iron stores resulted in a marked increase in early release.

Authors

Georges Fillet, James D. Cook, Clement A. Finch

×

Usage data is cumulative from May 2024 through May 2025.

Usage JCI PMC
Text version 117 5
PDF 33 13
Scanned page 251 4
Citation downloads 51 0
Totals 452 22
Total Views 474
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts