Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
Article has an altmetric score of 3

See more details

Referenced in 2 Wikipedia pages
20 readers on Mendeley
  • Article usage
  • Citations to this article (44)

Advertisement

Research Article Free access | 10.1172/JCI107650

The Mechanism of Activation of Hormone-Sensitive Lipase in Human Adipose Tissue

John C. Khoo, Alegria A. Aquino, and Daniel Steinberg

Division of Metabolic Disease, Department of Medicine, University of California, San Diego, La Jolla, California 92037

Find articles by Khoo, J. in: PubMed | Google Scholar

Division of Metabolic Disease, Department of Medicine, University of California, San Diego, La Jolla, California 92037

Find articles by Aquino, A. in: PubMed | Google Scholar

Division of Metabolic Disease, Department of Medicine, University of California, San Diego, La Jolla, California 92037

Find articles by Steinberg, D. in: PubMed | Google Scholar

Published April 1, 1974 - More info

Published in Volume 53, Issue 4 on April 1, 1974
J Clin Invest. 1974;53(4):1124–1131. https://doi.org/10.1172/JCI107650.
© 1974 The American Society for Clinical Investigation
Published April 1, 1974 - Version history
View PDF
Abstract

A partially purified hormone-sensitive triglyceride lipase of human adipose tissue was found to be activated twofold by the addition of cyclic 3′,5′-AMP, ATP, and magnesium ions. Lipase activities against diolein and monoolein were not affected. Addition of protein kinase inhibitor at zero time completely inhibited activation, and this inhibition was prevented by prior addition of an excess of exogenous protein kinase (from rabbit skeletal muscle). Addition of protein kinase inhibitor during the activation step blocked the activation process without a time lag, suggesting that protein kinase operates directly on hormone-sensitive lipase. Further purification yielded a fraction free of protein kinase, and lipase activation in this fraction depended absolutely on addition of exogenous kinase. Incubation of human fat with epinephrine or isoproterenol stimulated lipolysis and caused conversion of nonactivated hormone-sensitive lipase to its activated form, as indicated by a decrease in the activation subsequently obtainable in fractions prepared from such hormone-treated tissues. These findings strongly suggest that the stimulation of lipolysis by hormonal treatment is the consequence of the activation of hormone-sensitive triglyceride lipase by cyclic 3′,5′-AMP-dependent protein kinase.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 1124
page 1124
icon of scanned page 1125
page 1125
icon of scanned page 1126
page 1126
icon of scanned page 1127
page 1127
icon of scanned page 1128
page 1128
icon of scanned page 1129
page 1129
icon of scanned page 1130
page 1130
icon of scanned page 1131
page 1131
Version history
  • Version 1 (April 1, 1974): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

Article has an altmetric score of 3
  • Article usage
  • Citations to this article (44)

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts

Referenced in 2 Wikipedia pages
20 readers on Mendeley
See more details