Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI107634

A Monoclonal IgM Protein with Antibody-like Activity for Human Albumin

Stephen Hauptman and Thomas B. Tomasi Jr.

Department of Immunology, Mayo Foundation Medical School, Rochester, Minnesota 55901

Find articles by Hauptman, S. in: PubMed | Google Scholar

Department of Immunology, Mayo Foundation Medical School, Rochester, Minnesota 55901

Find articles by Tomasi, T. in: PubMed | Google Scholar

Published March 1, 1974 - More info

Published in Volume 53, Issue 3 on March 1, 1974
J Clin Invest. 1974;53(3):932–940. https://doi.org/10.1172/JCI107634.
© 1974 The American Society for Clinical Investigation
Published March 1, 1974 - Version history
View PDF
Abstract

The serum of a patient (L'ec) with an IgM lambda monoclonal protein was noted to bind albumin on immunoelectrophoresis. Analytical ultracentrifugation of the L'ec serum demonstrated 23S and 12S peaks, but no 4S (albumin) boundary. Immunologically identical 20S and 9S IgM proteins were isolated from the serum and the addition in vitro of either the patient's albumin or albumin isolated from normal serum was shown to reconstitute the 23S and 12S boundaries. The binding of high molecular weight IgM to albumin was demonstated by Sephadex G200 chromatography with 125I-labeled albumin and isolated IgM. Immunoelectrophoresis of the L'ec IgM developed with aggregated albumin (reverse immunoelectrophoresis) also demonstrated the binding of albumin to IgM. That all of the patient's IgM complexed with albumin was shown by affinity chromatography employing an aggregated albumin-immunoadsorbent column. Binding was shown to be of the noncovalent type by polyacrylamide gel electrophoresis in 8 M urea. With hot trypsin proteolysis, Fabμ and Fcμ5 fragments were isolated, and monomer albumin was shown to complex only with the Fabμ fragment by both analytical ultracentrifugation and molecular sieve chromatogaphy employing 125I-labeled Fab fragments. 1 mol of Fabμ fragment bound 1 mol of monomer albumin.

Polymers of human albumin, produced by heat aggregation, precipitated with the isolated L'ec protein on gel diffusion analysis and, when coated on sheep red blood cells, gave a hemagglutination titer greater than 1 million with the whole L'ec serum. 50 additional monoclonal IgM, 33 IgA, and 80 IgG sera failed to show precipitation or hemagglutination with aggregated albumin. Native monomer albumin inhibited precipitation only at high concentrations (> 50 mg/ml); dimer albumin or fragments of albumin produced by trypsin digestion inhibited at low concentrations (0.4 mg/ml). No reactivity occurred with the albumin of five other mammalian species, including bovine.

The L'ec protein has the characteristics of an antibody against aggregated albumin, which also has reactivity with native (monomer) albumin. This system shares many similarities with the reaction of IgM human rheumatoid factors with IgG antigen.

Images.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 932
page 932
icon of scanned page 933
page 933
icon of scanned page 934
page 934
icon of scanned page 935
page 935
icon of scanned page 936
page 936
icon of scanned page 937
page 937
icon of scanned page 938
page 938
icon of scanned page 939
page 939
icon of scanned page 940
page 940
Version history
  • Version 1 (March 1, 1974): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts