Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
Article has an altmetric score of 6

See more details

Referenced in 2 policy sources
20 readers on Mendeley
  • Article usage
  • Citations to this article (186)

Advertisement

Free access | 10.1172/JCI107607

Vitamin B6 Metabolism in Chronic Alcohol Abuse: PYRIDOXAL PHOSPHATE LEVELS IN PLASMA AND THE EFFECTS OF ACETALDEHYDE ON PYRIDOXAL PHOSPHATE SYNTHESIS AND DEGRADATION IN HUMAN ERYTHROCYTES

Lawrence Lumeng and Ting-Kai Li

Department of Medicine, Indiana University School of Medicine and Veterans Administration Hospital, Indianapolis, Indiana 46202

Department of Biochemistry, Indiana University School of Medicine and Veterans Administration Hospital, Indianapolis, Indiana 46202

Find articles by Lumeng, L. in: PubMed | Google Scholar

Department of Medicine, Indiana University School of Medicine and Veterans Administration Hospital, Indianapolis, Indiana 46202

Department of Biochemistry, Indiana University School of Medicine and Veterans Administration Hospital, Indianapolis, Indiana 46202

Find articles by Li, T. in: PubMed | Google Scholar

Published March 1, 1974 - More info

Published in Volume 53, Issue 3 on March 1, 1974
J Clin Invest. 1974;53(3):693–704. https://doi.org/10.1172/JCI107607.
© 1974 The American Society for Clinical Investigation
Published March 1, 1974 - Version history
View PDF
Abstract

The plasma pyridoxal-5′-phosphate (PLP) level of alcoholic subjects has been compared with that of non-alcoholic individuals in order to ascertain the incidence of abnormal vitamin B6 metabolism in chronic alcohol abuse. 66 alcoholic subjects were selected on the basis that they did not exhibit abnormal liver function tests and hematologic findings. 35 of them had plasma PLP concentrations less than 5 ng/ml, the lowest value encountered in 94 control subjects, indicating a high incidence of deranged PLP metabolism in alcoholic patients even when hepatic and hematologic abnormalities are absent. The biochemical basis for the altered PLP metabolism in chronic alcohol abuse was examined. Low plasma PLP levels in alcoholics were not accompanied by decreased pyridoxal kinase and pyridoxine phosphate oxidase activities in erythrocytes. Further studies with erythrocytes demonstrated that the cellular content of PLP is determined not only by the activities of these PLP-synthesizing enzymes but also by the activity of a phosphate-sensitive, membrane-associated, neutral phosphatase, which hydrolyzes phosphorylated B6 compounds.

Acetaldehyde, but not ethanol, impaired the net formation of PLP from pyridoxal, pyridoxine, and pyridoxine phosphate by erythrocytes. However, when the B6-phosphate phosphatase activity was inhibited by 80 mM phosphate, this effect of acetaldehyde was abolished. By the use of broken cell preparations, it was possible to demonstrate directly that the action of acetaldehyde is mediated by the phosphatase, resulting in an acceleration of the degradation of the phosphorylated B6 compounds in erythrocytes.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 693
page 693
icon of scanned page 694
page 694
icon of scanned page 695
page 695
icon of scanned page 696
page 696
icon of scanned page 697
page 697
icon of scanned page 698
page 698
icon of scanned page 699
page 699
icon of scanned page 700
page 700
icon of scanned page 701
page 701
icon of scanned page 702
page 702
icon of scanned page 703
page 703
icon of scanned page 704
page 704
Version history
  • Version 1 (March 1, 1974): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

Article has an altmetric score of 6
  • Article usage
  • Citations to this article (186)

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts

Referenced in 2 policy sources
20 readers on Mendeley
See more details