Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
Article has an altmetric score of 3

See more details

Referenced in 1 Wikipedia pages
10 readers on Mendeley
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI107587

Interaction of immunoglobulins with liposomes.

G Weissmann, A Brand, and E C Franklin

Department of Medicine, Rheumatic Diseases Study Group, and Irvington House Institute, New York University School of Medicine, New York 10016, USA.

Find articles by Weissmann, G. in: PubMed | Google Scholar

Department of Medicine, Rheumatic Diseases Study Group, and Irvington House Institute, New York University School of Medicine, New York 10016, USA.

Find articles by Brand, A. in: PubMed | Google Scholar

Department of Medicine, Rheumatic Diseases Study Group, and Irvington House Institute, New York University School of Medicine, New York 10016, USA.

Find articles by Franklin, E. in: PubMed | Google Scholar

Published February 1, 1974 - More info

Published in Volume 53, Issue 2 on February 1, 1974
J Clin Invest. 1974;53(2):536–543. https://doi.org/10.1172/JCI107587.
© 1974 The American Society for Clinical Investigation
Published February 1, 1974 - Version history
View PDF
Abstract

Liposomes were used as model targets to test the effect of immunoglobulins on biomembranes. Heat-aggregated immunoglobulins (Ig) exceeded native immunoglobulins in their capacity to release anions and glucose from model liposomes (either lecithin-dicetyl-phosphate-cholesterol or lecithin-stearylamine-cholesterol in molar ratios of 7:2:1). This interaction was not dependent upon the presence of cholesterol in the membrane. Mild heat-aggregation (10 min at 61.5 degrees C) increased the membrane-perturbing activity of certain Ig. Activity varied among classes and subclasses: IgG1 > pooled IgG > IgG4 > IgA1 > IgG3. IgG2, IgA2 and IgM were inert. Fc fragments of IgG were as active as IgG1, whereas Fab fragments were inactive. Prolonging aggregation to 60 min destroyed the activity of Ig. Membrane-activity could not be induced in non-Ig molecules (such as bovine serum albumin) by 10 or 60 min heat-aggregation. Density gradient centrifugation of IgG1 molecules indicated that membrane perturbing activity was associated with 15-20-s aggregates. Sepharose 4B chromatography demonstrated preferential interaction between cationic membranes and aggregated Ig, whereas anionic membranes interacted nonselectively with both native and aggregated Ig via salt-like interactions. One explanation for these data is that heat aggregation induces a conformational change in the Fc regions of certain Ig permitting them to interact with liposomes, presumably by enhancing their hydrophobic associations with membrane phospholipids.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 536
page 536
icon of scanned page 537
page 537
icon of scanned page 538
page 538
icon of scanned page 539
page 539
icon of scanned page 540
page 540
icon of scanned page 541
page 541
icon of scanned page 542
page 542
icon of scanned page 543
page 543
Version history
  • Version 1 (February 1, 1974): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

Article has an altmetric score of 3
  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts

Referenced in 1 Wikipedia pages
10 readers on Mendeley
See more details