Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article (17)

Advertisement

Research Article Free access | 10.1172/JCI107520

Characteristics of Membrane-Bound and Free Hepatic Ribosomes from Insulin-Deficient Rats I. ACUTE EXPERIMENTAL DIABETES MELLITUS

Daniel T. Peterson, Frank P. Alford, Eve P. Reaven, Irene Ueyama, and Gerald M. Reaven

Department of Medicine, Stanford University School of Medicine and Veterans Administration Hospital, Palo Alto, California 94304

Find articles by Peterson, D. in: PubMed | Google Scholar

Department of Medicine, Stanford University School of Medicine and Veterans Administration Hospital, Palo Alto, California 94304

Find articles by Alford, F. in: PubMed | Google Scholar

Department of Medicine, Stanford University School of Medicine and Veterans Administration Hospital, Palo Alto, California 94304

Find articles by Reaven, E. in: PubMed | Google Scholar

Department of Medicine, Stanford University School of Medicine and Veterans Administration Hospital, Palo Alto, California 94304

Find articles by Ueyama, I. in: PubMed | Google Scholar

Department of Medicine, Stanford University School of Medicine and Veterans Administration Hospital, Palo Alto, California 94304

Find articles by Reaven, G. in: PubMed | Google Scholar

Published December 1, 1973 - More info

Published in Volume 52, Issue 12 on December 1, 1973
J Clin Invest. 1973;52(12):3201–3211. https://doi.org/10.1172/JCI107520.
© 1973 The American Society for Clinical Investigation
Published December 1, 1973 - Version history
View PDF
Abstract

Membrane-bound and free ribosomes were prepared by discontinuous density gradient centrifugation from livers of rats 2-3 days after receiving alloxan (75 mg/kg) or streptozotocin (100 mg/kg). Hepatocytes from these animals were also examined by electron microscopy and subjected to quantitative morphometric analysis. The results indicated that the two populations of hepatic ribosomes respond differently to acute insulin deficiency. There was an overall reduction (P < 0.001) in total number of bound ribosomes per volume cytoplasm: the remaining bound ribosomes underwent a shift to smaller-sized ribosomal messenger RNA (mRNA) aggregates (P < 0.02); and the proteinsynthetic activity of these bound ribosomes was less than normal (P < 0.02) when protein synthesis was directed by endogenous mRNA. However, there was no difference between bound ribosomes from livers of normal and diabetic rats when protein synthesis was directed by polyuridylic acid. In contrast, free ribosomes were unchanged in number and degree of ribosomal mRNA aggregation, but displayed a significantly increased rate of in vitro protein synthesis (P < 0.01) as compared to normal controls. This increased protein-synthetic activity occurred when amino acid incorporation was directed by endogenous mRNA or polyuridylic acid. These changes in structure and function of bound and free hepatic ribosomes were prevented by the concomitant administration of insulin. The decrease in protein-synthetic activity of bound hepatic ribosomes from acutely diabetic rats seems to be secondary to marked disruption and disaggregation of the rough endoplasmic reticulum (RER) with production of smaller ribosomal mRNA aggregates which incorporate less amino acids into protein. Increased protein synthetic activity of free ribosome appears to be related to the ability of these ribosomes to copy mRNA more efficiently.

Images.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 3201
page 3201
icon of scanned page 3202
page 3202
icon of scanned page 3203
page 3203
icon of scanned page 3204
page 3204
icon of scanned page 3205
page 3205
icon of scanned page 3206
page 3206
icon of scanned page 3207
page 3207
icon of scanned page 3208
page 3208
icon of scanned page 3209
page 3209
icon of scanned page 3210
page 3210
icon of scanned page 3211
page 3211
Version history
  • Version 1 (December 1, 1973): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article (17)

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts