An exchange of Na+ for H+ has been proposed to explain why jejunal Na+ absorption is influenced by luminal concentrations of H+ and HCO3-. We studied the influence of luminal Na+ concentration on net HCO3- absorption by perfusing rat jejunum in vivo. When Na+ was omitted from the perfusion fluid, HCO3- absorption diminished by a fixed amount over a range of initial HCO3- concentrations of 15 to 80 mM. This change was not caused by alterations in transmural PD or direction of water movement. Because the rate of HCO3- absorption decreased as the luminal HCO3- concentration lessened, Na+-dependent HCO3- absorption accounted for an increasing percent of total absorption as the luminal concentration of HCO3- diminished.
Kenneth A. Hubel
Usage data is cumulative from May 2024 through May 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 100 | 2 |
42 | 16 | |
Scanned page | 258 | 1 |
Citation downloads | 52 | 0 |
Totals | 452 | 19 |
Total Views | 471 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.