Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI107473

Influence of Glucocorticoids on Glucagon Secretion and Plasma Amino Acid Concentrations in Man

Jonathan K. Wise, Rosa Hendler, and Philip Felig

1Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut 06510

Find articles by Wise, J. in: PubMed | Google Scholar

1Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut 06510

Find articles by Hendler, R. in: PubMed | Google Scholar

1Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut 06510

Find articles by Felig, P. in: PubMed | Google Scholar

Published November 1, 1973 - More info

Published in Volume 52, Issue 11 on November 1, 1973
J Clin Invest. 1973;52(11):2774–2782. https://doi.org/10.1172/JCI107473.
© 1973 The American Society for Clinical Investigation
Published November 1, 1973 - Version history
View PDF
Abstract

Plasma concentrations of glucagon, insulin, glucose, and individual plasma amino acids were measured in normal nonobese and obese subjects before and after 3 days of dexamethasone treatment (2 mg/day) and in patients with Cushing's syndrome. The subjects were studied in the basal postabsorptive state and following the infusion of alanine (0.15 g/kg) or ingestion of a protein meal.

In nonobese subjects dexamethasone treatment resulted in a 55% increment in basal glucagon levels and in a 60-100% increase in the maximal glucagon response to alanine infusion or protein ingestion. In obese subjects, basal glucagon rose by 110% following dexamethasone, while the response to alanine increased fourfold. In patients with Cushing's syndrome basal glucagon levels were 100% higher and the glucagon response to alanine infusion was 170% greater than in normal controls.

Dexamethasone treatment in normal subjects resulted in a 40% rise in plasma alanine concentration which was directly proportional to the rise in basal glucagon. The remaining 14 amino acids were unchanged. In the patients with Cushing's syndrome alanine levels were 40% higher than in normal controls and were directly proportional to basal glucagon concentrations. No other plasma amino acids were significantly altered in the group with Cushing's syndrome.

It is concluded that (a) glucocorticoids increase plasma glucagon concentration in the basal state and in response to protein ingestion or aminogenic stimulation; (b) this effect of glucocorticoids occurs in the face of obesity and persists in chronic hypercorticism; (c) hyperalaninemia is a characteristic of acute and chronic glucocorticoid excess, and may in turn contribute to steroid-induced hyperglucagonemia; and (d) increased alpha cell secretion may be a contributory factor in the gluconeogenic and diabetogenic effects of glucocorticoids.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 2774
page 2774
icon of scanned page 2775
page 2775
icon of scanned page 2776
page 2776
icon of scanned page 2777
page 2777
icon of scanned page 2778
page 2778
icon of scanned page 2779
page 2779
icon of scanned page 2780
page 2780
icon of scanned page 2781
page 2781
icon of scanned page 2782
page 2782
Version history
  • Version 1 (November 1, 1973): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts