Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article (113)

Advertisement

Research Article Free access | 10.1172/JCI107405

The Subunit Structure of Normal and Hemophilic Factor VIII

Gabriel A. Shapiro, Judith C. Andersen, Salvatore V. Pizzo, and Patrick A. McKee

Department of Medicine, Veterans Administration Hospital, Durham, North Carolina 27710

Department of Biochemistry, Duke University Medical Center, Durham, North Carolina 27710

Find articles by Shapiro, G. in: JCI | PubMed | Google Scholar

Department of Medicine, Veterans Administration Hospital, Durham, North Carolina 27710

Department of Biochemistry, Duke University Medical Center, Durham, North Carolina 27710

Find articles by Andersen, J. in: JCI | PubMed | Google Scholar

Department of Medicine, Veterans Administration Hospital, Durham, North Carolina 27710

Department of Biochemistry, Duke University Medical Center, Durham, North Carolina 27710

Find articles by Pizzo, S. in: JCI | PubMed | Google Scholar

Department of Medicine, Veterans Administration Hospital, Durham, North Carolina 27710

Department of Biochemistry, Duke University Medical Center, Durham, North Carolina 27710

Find articles by McKee, P. in: JCI | PubMed | Google Scholar

Published September 1, 1973 - More info

Published in Volume 52, Issue 9 on September 1, 1973
J Clin Invest. 1973;52(9):2198–2210. https://doi.org/10.1172/JCI107405.
© 1973 The American Society for Clinical Investigation
Published September 1, 1973 - Version history
View PDF
Abstract

Human factor VIII from normals and hemophiliacs was partially purified by ethanol and polyethylene glycol precipitations. Final purification was achieved by gel filtration on 2 or 4% agarose or ion exchange chromatography on diethylaminoethyl cellulose. Comparable amounts of highly purified protein were obtained from normal and hemophilic plasma following the agarose chromatography step. Highly purified factor VIII was not dissociated by 6 M guanidine hydrochloride or 1% sodium dodecyl sulfate. However, when reduced by β-mercaptoethanol and analyzed by sodium dodecyl sulfate polyacrylamide gel electrophoresis, a single subunit species with an estimated 195,000 molecular weight was found for both normal and hemophilic factor VIII. By sedimentation equilibrium analysis, the normal factor VIII subunit was homogeneous and had an estimated molecular weight of 202,000. The subunit polypeptides from normal or hemophilic factor VIII contained carbohydrate. Each was homogeneous by isoelectric focusing. Immunodiffusion of purified normal and hemophilic factor VIII against rabbit antiserum to purified normal human factor VIII showed a single line of precipitation. Very low concentrations of purified human thrombin initially increased the activity of normal factor VIII about threefold and then progressively destroyed activity by 3 h. Only minimal activation occurred with hemophilic factor VIII. Both the activation and inactivation of normal and hemophilic factor VIII were unaccompanied by detectable changes in subunit molecular weight. These findings may have implications for the definition of the molecular defect in hemophilic factor VIII.

Images.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 2198
page 2198
icon of scanned page 2199
page 2199
icon of scanned page 2200
page 2200
icon of scanned page 2201
page 2201
icon of scanned page 2202
page 2202
icon of scanned page 2203
page 2203
icon of scanned page 2204
page 2204
icon of scanned page 2205
page 2205
icon of scanned page 2206
page 2206
icon of scanned page 2207
page 2207
icon of scanned page 2208
page 2208
icon of scanned page 2209
page 2209
icon of scanned page 2210
page 2210
Version history
  • Version 1 (September 1, 1973): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article (113)

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts