Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI107354

Identification and Characterization of Subpopulations of Lymphocytes in Human Peripheral Blood after Fractionation on Discontinuous Gradients of Albumin THE CELLULAR DEFECT IN X-LINKED AGAMMAGLOBULINEMIA

R. S. Geha, F. S. Rosen, and E. Merler

Immunology Division, Department of Medicine, Children's Hospital Medical Center, Boston, Massachusetts 02115

Department of Pediatrics, Harvard Medical School, Boston, Massachusetts 02115

Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts 02115

Find articles by Geha, R. in: PubMed | Google Scholar

Immunology Division, Department of Medicine, Children's Hospital Medical Center, Boston, Massachusetts 02115

Department of Pediatrics, Harvard Medical School, Boston, Massachusetts 02115

Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts 02115

Find articles by Rosen, F. in: PubMed | Google Scholar

Immunology Division, Department of Medicine, Children's Hospital Medical Center, Boston, Massachusetts 02115

Department of Pediatrics, Harvard Medical School, Boston, Massachusetts 02115

Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts 02115

Find articles by Merler, E. in: PubMed | Google Scholar

Published July 1, 1973 - More info

Published in Volume 52, Issue 7 on July 1, 1973
J Clin Invest. 1973;52(7):1726–1734. https://doi.org/10.1172/JCI107354.
© 1973 The American Society for Clinical Investigation
Published July 1, 1973 - Version history
View PDF
Abstract

Normal human peripheral blood lymphocytes were separated on discontinuous gradients of 17-35% bovine serum albumin (BSA) into nine fractions. Three subpopulations of lymphocytes were obtained. One occupies the top third of the gradient (fractions 1-3, 17-23% BSA) and is rich in cells characterized by a high spontaneous rate of DNA synthesis and by the ability to give rise to colony-forming units. The middle portion of the gradient (fractions 4 and 5, 23-27% BSA) is rich in thymus-derived (T) lymphocytes identified by their vigorous response to mitogens and by their ability to form rosettes with sheep erythrocytes (E). The third subpopulation at the bottom of the gradient (fractions 6-9, 27-35% BSA) is rich in bone marrow-derived (B) lymphocytes capable of staining with fluorescent antiimmunoglobulin antisera and of forming rosettes with EAC1423.

The peripheral blood lymphocytes of five boys with proved X-linked agammaglobulinemia and two with probable X-linked agammaglobulinemia were found to be totally deficient in B lymphocytes (fractions 6-9) and lacked the subpopulation identified by immunofluorescent staining or rosette formation with EAC1423. One boy with proved X-linked agammaglobulinemia and two with probable X-linked agammaglobulinemia possessed a normal amount of circulating B lymphocytes.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 1726
page 1726
icon of scanned page 1727
page 1727
icon of scanned page 1728
page 1728
icon of scanned page 1729
page 1729
icon of scanned page 1730
page 1730
icon of scanned page 1731
page 1731
icon of scanned page 1732
page 1732
icon of scanned page 1733
page 1733
icon of scanned page 1734
page 1734
Version history
  • Version 1 (July 1, 1973): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts