We and others have recently identified mutations in the ABCA1 gene as the underlying cause of Tangier disease (TD) and of a dominantly inherited form of familial hypoalphalipoproteinemia (FHA) associated with reduced cholesterol efflux. We have now identified 13 ABCA1 mutations in 11 families (five TD, six FHA) and have examined the phenotypes of 77 individuals heterozygous for mutations in the ABCA1 gene. ABCA1 heterozygotes have decreased HDL cholesterol (HDL-C) and increased triglycerides. Age is an important modifier of the phenotype in heterozygotes, with a higher proportion of heterozygotes aged 30–70 years having HDL-C greater than the fifth percentile for age and sex compared with carriers less than 30 years of age. Levels of cholesterol efflux are highly correlated with HDL-C levels, accounting for 82% of its variation. Each 8% change in ABCA1-mediated efflux is predicted to be associated with a 0.1 mmol/l change in HDL-C. ABCA1 heterozygotes display a greater than threefold increase in the frequency of coronary artery disease (CAD), with earlier onset than unaffected family members. CAD is more frequent in those heterozygotes with lower cholesterol efflux values. These data provide direct evidence that impairment of cholesterol efflux and consequently reverse cholesterol transport is associated with reduced plasma HDL-C levels and increased risk of CAD.
Susanne M. Clee, John J.P. Kastelein, Marjel van Dam, Michel Marcil, Kirsten Roomp, Karin Y. Zwarts, Jennifer A. Collins, Roosje Roelants, Naoki Tamasawa, Tomás Stulc, Toshihiro Suda, Richard Ceska, Betsie Boucher, Colette Rondeau, Christele DeSouich, Angela Brooks-Wilson, Henri O.F. Molhuizen, Jiri Frohlich, Jacques Genest Jr., Michael R. Hayden
Usage data is cumulative from November 2023 through November 2024.
Usage | JCI | PMC |
---|---|---|
Text version | 611 | 81 |
151 | 46 | |
Figure | 308 | 8 |
Table | 199 | 0 |
Citation downloads | 57 | 0 |
Totals | 1,326 | 135 |
Total Views | 1,461 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.