Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI107183

Immunobiology of Fibrinogen. EMERGENCE OF NEOANTIGENIC EXPRESSIONS DURING PHYSIOLOGIC CLEAVAGE IN VITRO AND IN VIVO

Edward Plow and Thomas S. Edgington

Department of Experimental Pathology, Scripps Clinic and Research Foundation, La Jolla, California 92037

Find articles by Plow, E. in: PubMed | Google Scholar

Department of Experimental Pathology, Scripps Clinic and Research Foundation, La Jolla, California 92037

Find articles by Edgington, T. in: PubMed | Google Scholar

Published February 1, 1973 - More info

Published in Volume 52, Issue 2 on February 1, 1973
J Clin Invest. 1973;52(2):273–282. https://doi.org/10.1172/JCI107183.
© 1973 The American Society for Clinical Investigation
Published February 1, 1973 - Version history
View PDF
Abstract

Physiological degradation of fibrinogen by plasmin leads to a recognized series of intermediate and stable terminal cleavage fragments and is associated with complex modulation and progressive loss of native antigenic expressions. Early in association with progressive plasmin cleavage, a stable cleavage-associated neoantigen, present in the D-fragment region of the molecule, is exposed in vitro and can be recognized by competitive inhibition radioimmunoassay with specific antiserum. It is demonstrated that there is an approximate equimolar expression of the cleavage-associated neoantigen. fg-Dneo, on the X-, Y-, and D-fragments and no recognizable (< 10-3) expression by fibrinogen or by the E-fragment. The X-fragment contains two D regions in respect to total D-fragment-associated antigenic expressions but unitary expression of fg-Dneo is observed. The Y-fragment appears to contain one D-fragment region in respect to total D-fragment-associated antigens and exhibits close to unitary expression of fg-Dneo. Terminal cleavage digests containing the D- and E-fragments exhibit more than 10-fold greater native fibrinogen antigenic expression than the sum of the constituent fragments. This suggests the presence of a non-covalently associated native complex of the D- and E-fragments, and implies contiguity of the D- and E-fragments in the native fibrinogen molecule. The cleavage-associated neoantigen, fg-Dneo, is also generated in vivo and is generically demonstrable in the plasma of patients with various forms of in vivo fibrinolysis.

These studies offer a precise immunochemical system, based upon defined molecular events, for the investigation of physiological and pathophysiological cleavage of fibrinogen. By contrast with other approaches to the assay of in vitro or in vivo cleavage of fibrinogen, assay of the cleavage-associated neoantigen fg-Dneo is specific, sensitive, directly yields the molar concentration of all cleavage fragments except E, and is directly applicable to plasma.

Images.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 273
page 273
icon of scanned page 274
page 274
icon of scanned page 275
page 275
icon of scanned page 276
page 276
icon of scanned page 277
page 277
icon of scanned page 278
page 278
icon of scanned page 279
page 279
icon of scanned page 280
page 280
icon of scanned page 281
page 281
icon of scanned page 282
page 282
Version history
  • Version 1 (February 1, 1973): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts