Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

Metabolism of 1,25-dihydroxycholecalciferol in the rat
Charles A. Frolik, Hector F. DeLuga
Charles A. Frolik, Hector F. DeLuga
Published November 1, 1972
Citation Information: J Clin Invest. 1972;51(11):2900-2906. https://doi.org/10.1172/JCI107114.
View: Text | PDF
Research Article

Metabolism of 1,25-dihydroxycholecalciferol in the rat

  • Text
  • PDF
Abstract

Administration of 60 pmoles of 1,25-dihydroxycholecalciferol to vitamin D-deficient rats on a low calcium diet gives a maximal intestinal calcium transport response in 7 hr and a maximal bone calcium mobilization response in 12 hr. During the 48 hr after injection of radioactive 1,25-dihydroxycholecalciferol, unchanged 1,25-dihydroxycholecalciferol accounts for 71-98% of the radioactivity found in the intestine with minor amounts appearing in more polar metabolites. In the bone, for the 1st 12 hr, 1,25-dihydroxycholecalciferol is the major form (75-82%) present while at 24 hr, the amount of 1,25-dihydroxycholecalciferol decreases with a corresponding rise in the amounts of metabolites both less polar and more polar than the 1,25-dihydroxycholecalciferol. Since these metabolies are at their highest concentration when bone calcium mobilization is decreasing, they are most likely not responsible for the calcium mobilization observed during the 1st 12 hr. The appearance of water-soluble radioactivity in the kidney, plasma, liver, and muscle 24 hr after 1,25-dihydroxycholecalciferol injection has been demonstrated. The present results suggest that, although 1,25-dihydroxycholecalciferol is converted to further metabolites in the rat, it is probably the form of vitamin D responsible for initiating intestinal calcium transport and bone calcium mobilization.

Authors

Charles A. Frolik, Hector F. DeLuga

×

Usage data is cumulative from May 2024 through May 2025.

Usage JCI PMC
Text version 102 0
PDF 49 11
Scanned page 215 1
Citation downloads 54 0
Totals 420 12
Total Views 432
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts