Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI107006

Urea transport in the proximal tubule and the descending limb of Henle

Juha P. Kokko

Department of Internal Medicine, The University of Texas Southwestern Medical School, Dallas, Texas 75235

Find articles by Kokko, J. in: JCI | PubMed | Google Scholar

Published August 1, 1972 - More info

Published in Volume 51, Issue 8 on August 1, 1972
J Clin Invest. 1972;51(8):1999–2008. https://doi.org/10.1172/JCI107006.
© 1972 The American Society for Clinical Investigation
Published August 1, 1972 - Version history
View PDF
Abstract

Urea transport in proximal convoluted tubule (PCT) and descending limb of Henle (DLH) was studied in perfused segments of rabbit nephrons in vitro.

Active transport of urea was ruled out in a series of experiments in which net transport of fluid was zero. Under these conditions the collected urea concentration neither increased nor decreased when compared to the mean urea concentration in the perfusion fluid and the bath.

Permeability coefficient for urea (Purea) was calculated from the disappearance of urea-14C added to perfusion fluid. Measurements were obtained under conditions of zero net fluid movement: DLH was perfused with isosmolal ultrafiltrate (UF) of the same rabbit serum as the bath, while PCT was perfused with equilibrium solution (UF diluted with raffinose solution for fluid [Na] = 127 mEq/liter). Under these conditions Purea per unit length was 3.3±0.4 × 10-7 cm2/sec (5.3±0.6 × 10-5 cm/sec assuming I.D. = 20μ) in PCT and 0.93±0.4 × 10-7 cm2/sec (1.5±0.5 × 10-5 cm/sec) in DLH. When compared to previously published results, these values show that the PCT is 2.5 times less permeable to urea than to Na, while the DLH is as impermeable to urea as to Na. These results further indicate that the DLH is less permeable to both Na and urea than the PCT.

The reflection coefficient for urea, σurea, was calculated as the ratio of induced solution efflux when 95 mOsm/liter of urea was added to the bath, as compared to net fluid movement induced by addition to the bath of equivalent amount of raffinose, σurea in DLH is 0.95±0.4 as compared to 0.91±0.05 in PCT. σurea in DLH is approximately equal to σNa; however, σurea in PCT is higher than σNa (0.68).

Several types of studies were conducted to examine the role of urea and urea plus sodium chloride in concentrating the fluid in the DLH. From the obtained results it was concluded that the intraluminal fluid of DLH is primarily concentrated by abstraction of water without significant net entry of solute. These results are discussed with respect to possible significance in the overall operation of the countercurrent system.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 1999
page 1999
icon of scanned page 2000
page 2000
icon of scanned page 2001
page 2001
icon of scanned page 2002
page 2002
icon of scanned page 2003
page 2003
icon of scanned page 2004
page 2004
icon of scanned page 2005
page 2005
icon of scanned page 2006
page 2006
icon of scanned page 2007
page 2007
icon of scanned page 2008
page 2008
Version history
  • Version 1 (August 1, 1972): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts