Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

Lithium-induced nephrogenic diabetes insipidus: in vivo and in vitro studies
Irwin Singer, … , Donald Rotenberg, Jules B. Puschett
Irwin Singer, … , Donald Rotenberg, Jules B. Puschett
Published May 1, 1972
Citation Information: J Clin Invest. 1972;51(5):1081-1091. https://doi.org/10.1172/JCI106900.
View: Text | PDF
Research Article

Lithium-induced nephrogenic diabetes insipidus: in vivo and in vitro studies

  • Text
  • PDF
Abstract

The physiological basis for the polyuria and polydipsia occurring in some manic-depressive patients treated with lithium salts was studied in vivo and in vitro. Three lithium-treated polyuric patients, in whom other causes of a concentrating defect were excluded, had abnormal urinary concentrating abilities after a standard water depreviation test. Two of these patients failed to respond to exogenous vasopressin (ADH) and one had a subnormal response. The abilities of these patients to excrete solute-free water (CH2O) was comparable to normal subjects during steady-state water diuresis, suggesting no gross abnormalities in sodium transport. However, each of these patients demonstrated abnormally low capacities to reabsorb solute-free water (TCH2O) under hydropenic conditions after administration of hypertonic saline and vasopressin. These in vivo findings demonstrate at least a nephrogenic basis for the diabetes insipidus syndrome manifested by these three patients.

Authors

Irwin Singer, Donald Rotenberg, Jules B. Puschett

×

Usage data is cumulative from May 2024 through May 2025.

Usage JCI PMC
Text version 214 22
PDF 48 21
Scanned page 408 2
Citation downloads 57 0
Totals 727 45
Total Views 772
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts