Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article (39)

Advertisement

Concise Publication Free access | 10.1172/JCI106860

Erythrocytosis in Spontaneously Hypertensive Rats

Subha Sen, George C. Hoffman, Nicholas T. Stowe, Robert R. Smeby, and F. Merlin Bumpus

1Research Division and Department of Laboratory Hematology, Cleveland Clinic Foundation, Cleveland, Ohio 44106

Find articles by Sen, S. in: JCI | PubMed | Google Scholar

1Research Division and Department of Laboratory Hematology, Cleveland Clinic Foundation, Cleveland, Ohio 44106

Find articles by Hoffman, G. in: JCI | PubMed | Google Scholar

1Research Division and Department of Laboratory Hematology, Cleveland Clinic Foundation, Cleveland, Ohio 44106

Find articles by Stowe, N. in: JCI | PubMed | Google Scholar

1Research Division and Department of Laboratory Hematology, Cleveland Clinic Foundation, Cleveland, Ohio 44106

Find articles by Smeby, R. in: JCI | PubMed | Google Scholar

1Research Division and Department of Laboratory Hematology, Cleveland Clinic Foundation, Cleveland, Ohio 44106

Find articles by Bumpus, F. in: JCI | PubMed | Google Scholar

Published March 1, 1972 - More info

Published in Volume 51, Issue 3 on March 1, 1972
J Clin Invest. 1972;51(3):710–714. https://doi.org/10.1172/JCI106860.
© 1972 The American Society for Clinical Investigation
Published March 1, 1972 - Version history
View PDF
Abstract

During the study of an inbred strain of Wistar rats which spontaneously develop hypertension when they reach a weight of approximately 150 g, it was found that these animals also develop an erythrocytosis. A significant increase in red cell count was observed in spontaneously hypertensive (SH) rats (8-11 × 106 RBC/mm3) when compared with normotensive rats (6-7 × 106 RBC/mm3) of the same strain. This increase in red cell count paralleled the increase in body weight and the rise in blood pressure.

Since the plasma volume, as measured with labeled albumin was normal, there was an absolute increase in red cells. The hematocrit and hemoglobin content of the blood measured in SH rats were only slightly greater than those found in normotensive rats. However, the mean cell volume (MCV) of the red cells in the SH rats was 45-47 μ3 as compared with 51-53 μ3 in normotensive rats.

A fourfold increase in 24 hr 59Fe incorporation into the red cells was found in the SH rats when compared with normotensive controls. The bone marrow of the SH rats showed erythroid hyperplasia. When the SH rats were treated with α-methyldopa (Aldomet 200 mg/kg daily, i.p.) the red cell count fell in parallel with the drop in blood pressure. No change in red cell count or blood pressure was observed in normotensive rats treated in the same manner. The erythropoietin titer was high in SH rats, and was undetectable in normotensive rats. These observations suggest a direct relationship between the hypertension and the erythrocytosis mediated by erythropoietin; both are genetically controlled.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 710
page 710
icon of scanned page 711
page 711
icon of scanned page 712
page 712
icon of scanned page 713
page 713
icon of scanned page 714
page 714
Version history
  • Version 1 (March 1, 1972): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article (39)

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts