Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article (35)

Advertisement

Research Article Free access | 10.1172/JCI106830

Quantitative Radioautography of Sugar Transport in Intestinal Biopsies from Normal Humans and a Patient with Glucose-Galactose Malabsorption

Charles E. Stirling, Albert J. Schneider, Ming-Der Wong, and William B. Kinter

Department of Physiology, State University of New York Upstate Medical Center, Syracuse, New York 13210

Department of Pediatrics, State University of New York Upstate Medical Center, Syracuse, New York 13210

Find articles by Stirling, C. in: PubMed | Google Scholar

Department of Physiology, State University of New York Upstate Medical Center, Syracuse, New York 13210

Department of Pediatrics, State University of New York Upstate Medical Center, Syracuse, New York 13210

Find articles by Schneider, A. in: PubMed | Google Scholar

Department of Physiology, State University of New York Upstate Medical Center, Syracuse, New York 13210

Department of Pediatrics, State University of New York Upstate Medical Center, Syracuse, New York 13210

Find articles by Wong, M. in: PubMed | Google Scholar

Department of Physiology, State University of New York Upstate Medical Center, Syracuse, New York 13210

Department of Pediatrics, State University of New York Upstate Medical Center, Syracuse, New York 13210

Find articles by Kinter, W. in: PubMed | Google Scholar

Published February 1, 1972 - More info

Published in Volume 51, Issue 2 on February 1, 1972
J Clin Invest. 1972;51(2):438–451. https://doi.org/10.1172/JCI106830.
© 1972 The American Society for Clinical Investigation
Published February 1, 1972 - Version history
View PDF
Abstract

Both galactose accumulation and phlorizin binding by columnar epithelial cells have been investigated in vitro with a recently developed technique for high-resolution, plastic-section radioautography which is particularly suited to small quantities of biopsy tissue. Grain density analysis of the radioautographs provides definitive support for the view that the cellular mechanisms underlying glucose-galactose absorption in laboratory animals are fully applicable to the small intestine of man. Even the number of sugar carriers at the microvillar membrane appears similar and the major quantitative difference, lower affinity for phlorizin in man, correlates with the finding that phlorizin is also a less potent inhibitor of uphill, galactose transport at the microvilli. In addition, radioautographs of biopsies taken 2 yr apart from a patient with glucose-galactose malabsorption provide evidence that the cellular defect in this inborn error of transport is a persistent reduction in the number of functioning sugar carriers at the microvillar membrane.

Images.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 438
page 438
icon of scanned page 439
page 439
icon of scanned page 440
page 440
icon of scanned page 441
page 441
icon of scanned page 442
page 442
icon of scanned page 443
page 443
icon of scanned page 444
page 444
icon of scanned page 445
page 445
icon of scanned page 446
page 446
icon of scanned page 447
page 447
icon of scanned page 448
page 448
icon of scanned page 449
page 449
icon of scanned page 450
page 450
icon of scanned page 451
page 451
Version history
  • Version 1 (February 1, 1972): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article (35)

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts