Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article (91)

Advertisement

Research Article Free access | 10.1172/JCI106803

Mechanism of Antidiuretic Effect of Beta Adrenergic Stimulation

Robert W. Schrier, Roger Lieberman, Robert C. Ufferman, and Judith A. Harbottle

Department of Medicine and Cardiovascular Research Institute, University of California San Francisco, San Francisco, California 94122

Find articles by Schrier, R. in: PubMed | Google Scholar

Department of Medicine and Cardiovascular Research Institute, University of California San Francisco, San Francisco, California 94122

Find articles by Lieberman, R. in: PubMed | Google Scholar

Department of Medicine and Cardiovascular Research Institute, University of California San Francisco, San Francisco, California 94122

Find articles by Ufferman, R. in: PubMed | Google Scholar

Department of Medicine and Cardiovascular Research Institute, University of California San Francisco, San Francisco, California 94122

Find articles by Harbottle, J. in: PubMed | Google Scholar

Published January 1, 1972 - More info

Published in Volume 51, Issue 1 on January 1, 1972
J Clin Invest. 1972;51(1):97–111. https://doi.org/10.1172/JCI106803.
© 1972 The American Society for Clinical Investigation
Published January 1, 1972 - Version history
View PDF
Abstract

The effect of beta adrenergic stimulation on renal-diluting capacity was examined in the dog. Beta adrenergic stimulation with intravenous isoproterenol significantly increased urinary osmolality (UOsm) and decreased free water clearance (CH2O), and these effects were rapidly reversible with cessation of the infusion. This antidiuretic effect of systemic beta adrenergic stimulation was comparable in innervated and denervated kidneys and was not associated with alterations in glomerular filtration rate or renal vascular resistance. Renal perfusion pressure was maintained constant in all of the experiments. The same dose of isoproterenol, which produced the antidiuretic effect and markedly stimulated cardiac beta adrenergic receptors when infused intravenously, was not found either to increase UOsm or to decrease CH2O when infused directly into the renal artery. Removal of the source of production and release of antidiuretic hormone (ADH) was, however, found to abolish the effect of intravenous isoproterenol on UOsm. A small effect on CH2O persisted and appeared to be related to an increase in arterial hematocrit. Thus, the results of the study exclude a major role of alterations in renal hemodynamics and renal innervation in the antidiuretic response to beta adrenergic stimulation with isoproterenol. They also provide no support for the hypothesis that beta adrenergic stimulation may directly alter the water permeability of the renal tubular epithelium. Rather the results suggest that the primary mechanism of the antidiuretic effect of beta adrenergic stimulation involves the integrity of the hypothalamoneurohypophyial system and the release of ADH.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 97
page 97
icon of scanned page 98
page 98
icon of scanned page 99
page 99
icon of scanned page 100
page 100
icon of scanned page 101
page 101
icon of scanned page 102
page 102
icon of scanned page 103
page 103
icon of scanned page 104
page 104
icon of scanned page 105
page 105
icon of scanned page 106
page 106
icon of scanned page 107
page 107
icon of scanned page 108
page 108
icon of scanned page 109
page 109
icon of scanned page 110
page 110
icon of scanned page 111
page 111
Version history
  • Version 1 (January 1, 1972): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article (91)

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts