The failure of blood flow to return to the kidney following a transient period of ischemia has long been recognized. The cause of this “no-reflow” has been investigated in the rat after a transient period of total obstruction of the renal arteries. The vascular pattern of the kidneys as visualized with silicone rubber injection shows a diffuse patchy ischemia throughout the kidney, which persists after release of the obstructed renal artery. Electron microscopic studies of ischemic kidneys showed that all cellular elements were swollen and limiting the available vascular space. Functional studies revealed an increase in plasma urea nitrogen and creatinine after 1 hr or longer ischemic periods. The ischemia, cell swelling, “no-reflow,” and subsequent renal dysfunction occurring after obstruction to the renal arteries were corrected by the administration of hypertonic mannitol, but were unaffected by an equivalent expansion of the extracellular fluid volume either with isotonic saline or isotonic mannitol, showing that the osmotic effect was primary. The hypothesis is presented that ischemic swelling of cells may occlude small blood vessels so that recirculation does not resume even after the initial cause of the ischemia is no longer present; solutes which do not penetrate cell membranes are able to shrink swollen cells, increase the available vascular space and thus permit reflow of blood to the ischemic organ.
Jorge Flores, Donald R. DiBona, Clyde H. Beck, Alexander Leaf
Usage data is cumulative from April 2024 through April 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 201 | 11 |
59 | 27 | |
Figure | 0 | 7 |
Scanned page | 304 | 6 |
Citation downloads | 40 | 0 |
Totals | 604 | 51 |
Total Views | 655 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.