Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article (12)

Advertisement

Research Article Free access | 10.1172/JCI106748

Effects of 3-nitro-l-tyrosine on thyroid function in the rat: an experimental model for the dehalogenase defect

William L. Green

1Robert H. Williams Laboratory for Clinical Investigation, the Department of Medicine, Harborview Medical Center and the University of Washington School of Medicine, Seattle, Washington 98104

Find articles by Green, W. in: PubMed | Google Scholar

Published December 1, 1971 - More info

Published in Volume 50, Issue 12 on December 1, 1971
J Clin Invest. 1971;50(12):2474–2484. https://doi.org/10.1172/JCI106748.
© 1971 The American Society for Clinical Investigation
Published December 1, 1971 - Version history
View PDF
Abstract

The effects on thyroid function of an inhibitor of tyrosine dehalogenase, 3-nitro-L-tyrosine (MNT) have been investigated in rats. In preliminary studies, marked inhibition of iodotyrosine deiodination was demonstrated in rats drinking 8 mM MNT. A series of experiments was then performed in which rats received Remington low iodine diet and 8 mM MNT as drinking fluid. This regimen had the following effects, compared to the effects of a low iodine diet alone: (a) a decrease in serum protein-bound iodine, elevation of serum thyrotropin level, goiter, and growth inhibition all prevented or reversed by iodine supplements: (b) on initiation of MNT, a 2- to 3-fold increase in the rate of release of radioiodine from the thyroid and concomitant urinary excretion of large amounts of organic iodine: and (c) after 2 wk of MNT, a greatly increased rate of thyroidal uptake and release of 131I, an increase in the ratio of monoiodotyrosine-131I to diiodotyrosine-131I in thyroid proteolysates and the appearance of labeled iodotyrosines in serum.

Acute administration of MNT intraperitoneally to rats on either an iodine-deficient or iodine-sufficient diet did not inhibit thyroidal uptake of 131I or alter the distribution of 131I among thyroidal iodoamino acids.

It is concluded that MNT is an effective inhibitor of iodotyrosine deiodination in vivo, without other important actions on thyroid function. Thus, MNT treatment affords a model for the human dehalogenase defect. By provoking iodotyrosine secretion and consequent urinary loss of iodine, MNT can exaggerate the effects of a low iodine intake, producing goitrous hypothyroidism despite a rapid rate of iodine turnover in the thyroid.

Images.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 2474
page 2474
icon of scanned page 2475
page 2475
icon of scanned page 2476
page 2476
icon of scanned page 2477
page 2477
icon of scanned page 2478
page 2478
icon of scanned page 2479
page 2479
icon of scanned page 2480
page 2480
icon of scanned page 2481
page 2481
icon of scanned page 2482
page 2482
icon of scanned page 2483
page 2483
icon of scanned page 2484
page 2484
Version history
  • Version 1 (December 1, 1971): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article (12)

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts