Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

Alteration in the rheologic properties of plasmodium knowlesi-infected red cells. A possible mechanism for capillary obstruction
Louis H. Miller, … , Shunichi Usami, Shu Chien
Louis H. Miller, … , Shunichi Usami, Shu Chien
Published July 1, 1971
Citation Information: J Clin Invest. 1971;50(7):1451-1455. https://doi.org/10.1172/JCI106629.
View: Text | PDF
Research Article

Alteration in the rheologic properties of plasmodium knowlesi-infected red cells. A possible mechanism for capillary obstruction

  • Text
  • PDF
Abstract

Red cells parasitized by Plasmodium knowlesi concentrate within the microcirculation of many organs including cerebral capillaries in rhesus monkeys. The possibility that P. knowlesi could alter the rheologic properties of red cells so that they are trapped within capillaries was investigated in the present study. The viscosity of P. knowlesi-infected red cells suspended in Ringer's solution was increased at all shear rates at hematocrits above 30%. At moderate parasitemia the resistance to flow through 5 μ polycarbonate sieves was increased; at high parasitemia the pores were obstructed. Mature trophozoites caused more obstruction than young trophozoites (rings) at any given level of parasitemia. The reduction of deformability of red cells infected by schizonts of P. knowlesi was further demonstrated by their exclusion from rouleaux in a plasma suspension. Therefore, the red cells infected by P. knowlesi become less deformable, and this reduction in red cell deformability may explain the obstruction of cerebral capillaries.

Authors

Louis H. Miller, Shunichi Usami, Shu Chien

×

Usage data is cumulative from May 2024 through May 2025.

Usage JCI PMC
Text version 202 6
PDF 56 16
Scanned page 197 2
Citation downloads 56 0
Totals 511 24
Total Views 535
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts