Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article (27)

Advertisement

Research Article Free access | 10.1172/JCI106590

Relationship between renin and intrarenal hemodynamics in hemorrhagic hypotension

A. Grandchamp, R. Veyrat, E. Rosset, J. R. Scherrer, and B. Truniger

Medizinische Universitätsklinik, Inselspital, Bern

Laboratoire de Physiopathologie, Université de Genéve, Switzerland

Find articles by Grandchamp, A. in: JCI | PubMed | Google Scholar

Medizinische Universitätsklinik, Inselspital, Bern

Laboratoire de Physiopathologie, Université de Genéve, Switzerland

Find articles by Veyrat, R. in: JCI | PubMed | Google Scholar

Medizinische Universitätsklinik, Inselspital, Bern

Laboratoire de Physiopathologie, Université de Genéve, Switzerland

Find articles by Rosset, E. in: JCI | PubMed | Google Scholar

Medizinische Universitätsklinik, Inselspital, Bern

Laboratoire de Physiopathologie, Université de Genéve, Switzerland

Find articles by Scherrer, J. in: JCI | PubMed | Google Scholar

Medizinische Universitätsklinik, Inselspital, Bern

Laboratoire de Physiopathologie, Université de Genéve, Switzerland

Find articles by Truniger, B. in: JCI | PubMed | Google Scholar

Published May 1, 1971 - More info

Published in Volume 50, Issue 5 on May 1, 1971
J Clin Invest. 1971;50(5):970–978. https://doi.org/10.1172/JCI106590.
© 1971 The American Society for Clinical Investigation
Published May 1, 1971 - Version history
View PDF
Abstract

In order to investigate the possible role of the renin-angiotensin system in the regulation of intrarenal hemodynamics in hemorrhagic hypotension (HH), seven mongrel dogs have been studied under the following conditions: (a) Control, (b) HH (mean arterial pressure 70 mm Hg), and (c) HH + alpha adrenergic blockade by phenoxybenzamine (HH + POB). The following parameters were obtained for the right kidney: Intrarenal distribution of blood flow and local blood flow rates (133Xe washout technique); total renal blood flow (RBF) on the basis of the clearance and extraction ratio of PAH and the arterial hematocrit; plasma renin concentrations in the renal artery and vein by the method of Boucher and his associates; and renin release into the renal circulation.

Alpha adrenergic blockade reverted the typical redistribution of intrarenal blood flow observed under HH. In hemorrhage, arterial and venous renin concentrations increased by a factor of 3.4 and 4.8 respectively. A further small increase was observed during HH + POB with the respective factors increasing to 4.8 and 5.3, as compared with control values. The renin release into the circulation increased by a factor of 1.2 in HH and 4.0 in HH + POB. Whereas in HH there seemed to be a relationship between increased renin concentrations or renin release, and the redistribution of blood flow, no such correlation was found during α-adrenergic blockade. From these observations it is concluded that renin alone is unable to maintain the typical redistribution of RBF seen during hemorrhage. Circumstantial evidence points to a permissive role of the renin-angiotensin system in the pathogenesis of the patchy cortical hypoperfusion caused by sympathoadrenergic mechanisms during hemorrhagic hypotension.

Images.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 970
page 970
icon of scanned page 971
page 971
icon of scanned page 972
page 972
icon of scanned page 973
page 973
icon of scanned page 974
page 974
icon of scanned page 975
page 975
icon of scanned page 976
page 976
icon of scanned page 977
page 977
icon of scanned page 978
page 978
Version history
  • Version 1 (May 1, 1971): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article (27)

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts