The interrelationships among transpulmonary pressure, flow, and volume during exhausting exercise were studied in 12 males with chronic obstructive lung disease. Expiratory pressure during exercise was compared with flow-limiting pressure (Pmax) measured at rest. In 11 patients, expiratory pressure during exercise exceeded Pmax, indicating that ventilation became mechanically inefficient. Pmax values of the patients were lower than those of normal subjects. Evidence of expiratory flow augmentation during exercise was noted in two subjects. Since 10 subjects achieved maximal expiratory flow predicted from flow-volume curves when heart rate was not maximal, we conclude that exercise capacity in most subjects was clearly limited by the deranged ventilatory apparatus. Elevations in mean intrathoracic pressure during exercise also may interfere with venous return and impose an additional limitation.
William A. Potter, Snorri Olafsson, Robert E. Hyatt
Usage data is cumulative from November 2023 through November 2024.
Usage | JCI | PMC |
---|---|---|
Text version | 208 | 0 |
77 | 27 | |
Scanned page | 375 | 3 |
Citation downloads | 37 | 0 |
Totals | 697 | 30 |
Total Views | 727 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.