Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article (38)

Advertisement

Research Article Free access | 10.1172/JCI106507

Glutathione-dependent peroxidative metabolism in the alveolar macrophage

Molly T. Vogt, Catherine Thomas, Charles L. Vassallo, R. E. Basford, and J. Bernard L. Gee

Department of Biochemistry, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania 15213

Department of Medicine, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania 15213

Find articles by Vogt, M. in: JCI | PubMed | Google Scholar

Department of Biochemistry, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania 15213

Department of Medicine, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania 15213

Find articles by Thomas, C. in: JCI | PubMed | Google Scholar

Department of Biochemistry, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania 15213

Department of Medicine, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania 15213

Find articles by Vassallo, C. in: JCI | PubMed | Google Scholar

Department of Biochemistry, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania 15213

Department of Medicine, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania 15213

Find articles by Basford, R. in: JCI | PubMed | Google Scholar

Department of Biochemistry, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania 15213

Department of Medicine, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania 15213

Find articles by Gee, J. in: JCI | PubMed | Google Scholar

Published February 1, 1971 - More info

Published in Volume 50, Issue 2 on February 1, 1971
J Clin Invest. 1971;50(2):401–410. https://doi.org/10.1172/JCI106507.
© 1971 The American Society for Clinical Investigation
Published February 1, 1971 - Version history
View PDF
Abstract

Phagocytosis by rabbit alveolar macrophages (AM) is accompanied by increases in O2 consumption, glucose oxidation, and H2O2 formation. Two aspects of the interrelations between these metabolic features of phagocytosis have been studied.

First, the following evidence indicates that glutathione, glutathione reductase, and peroxidase serve as a cytoplasmic shuttle between H2O2 and NADPH-dependent glucose oxidation: (a) AM contain 5.9 mμmoles of reduced glutathione per 106 cells and exhibit glutathione peroxidase and NADPH-specific glutathione reductase activity; (b) oxidized glutathione potentiates NADP stimulation of glucose oxidation; (c) an artificial H2O2-generating system stimulates glucose oxidation; (d) the cell penetrating thiol inhibitor, N-ethylmaleimide diminishes glucose oxidation. This effect largely depends on inhibition of the glutathione system rather than on inhibition of either H2O2 formation or enzymes directly subserving glucose oxidation.

Second, three potential H2O2-generating oxidases have been sought. No cyanide-insensitive NADH or NADPH oxidase activity could be detected. D-amino acid oxidase activity was 0.48 ±0.07 U/106 cells with D-alanine as substrate.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 401
page 401
icon of scanned page 402
page 402
icon of scanned page 403
page 403
icon of scanned page 404
page 404
icon of scanned page 405
page 405
icon of scanned page 406
page 406
icon of scanned page 407
page 407
icon of scanned page 408
page 408
icon of scanned page 409
page 409
icon of scanned page 410
page 410
Version history
  • Version 1 (February 1, 1971): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article (38)

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts