To study the catabolism of erythrocyte phospholipids, human erythrocytes were labeled with radioactive fatty acid (FA). Labeling was performed by the two separate routes which together are thought to be responsible for the majority of phosphatide renewal in the red cell: (a) passive equilibration of erythrocytes with preformed acid-labeled red cell phosphatidylcholine (PC) and (b) active, “acylase”-dependent, incorporation of free fatty acid in the presence of ATP coenzyme A and magnesium. (As measured here “acylase” = the over-all effect of fatty acid thioesterification and the action of acyl-CoA: acylglycerophosphoryl acyltransferase.) The labeled cells were then reincubated in serum and the loss of radioactivity from cells into serum was examined.
Stephen B. Shohet
Usage data is cumulative from January 2024 through January 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 88 | 1 |
47 | 21 | |
Scanned page | 306 | 10 |
Citation downloads | 37 | 0 |
Totals | 478 | 32 |
Total Views | 510 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.