Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI106373

Pancreozymin bioassay in man based on pancreatic enzyme secretion: potency of specific amino acids and other digestive products

Vay L. W. Go, Alan F. Hofmann, and W. H. J. Summerskill

1Gastroenterology Unit, Mayo Clinic and Mayo Foundation, Rochester, Minnesota 55901

Find articles by Go, V. in: PubMed | Google Scholar

1Gastroenterology Unit, Mayo Clinic and Mayo Foundation, Rochester, Minnesota 55901

Find articles by Hofmann, A. in: PubMed | Google Scholar

1Gastroenterology Unit, Mayo Clinic and Mayo Foundation, Rochester, Minnesota 55901

Find articles by Summerskill, W. in: PubMed | Google Scholar

Published August 1, 1970 - More info

Published in Volume 49, Issue 8 on August 1, 1970
J Clin Invest. 1970;49(8):1558–1564. https://doi.org/10.1172/JCI106373.
© 1970 The American Society for Clinical Investigation
Published August 1, 1970 - Version history
View PDF
Abstract

The ability of products of digestion to stimulate pancreozymin secretion in man was investigated using a bioassay procedure, based on duodenal perfusion, which quantified the total outputs of pancreatic enzymes evoked by intraduodenal stimuli under steady-state conditions. Patterns of response resulting from physiologic intraduodenal concentrations of test material were basal output (with isotonic saline), washout of enzymes (with dextrose, micellar fatty acid, and amino acids), and sustained output of enzymes (with amino acids and micellar fatty acid). The sustained secretion of pancreatic enzymes found during the 2nd hr of perfusion and subsequently was characteristic of pancreozymin-induced secretion. The enzyme output in response to a mixture of essential and nonessential amino acids was significantly higher than that evoked by micellar fatty acid and was comparable with that resulting from the maximally tolerated dose of pancreozymin given by vein.

Perfusion with essential amino acids caused enzyme outputs comparable to those induced by perfusion with the original amino acid mixture, whereas perfusion with nonessential amino acids had no effect. When the essential amino acids were tested individually, only phenylalanine, methionine, and valine caused significant increases in pancreatic enzyme output; the effect of tryptophan was indeterminate. However, the pancreatic enzyme output was less in response to these three essential amino acids than to mixtures containing all of them.

Images.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 1558
page 1558
icon of scanned page 1559
page 1559
icon of scanned page 1560
page 1560
icon of scanned page 1561
page 1561
icon of scanned page 1562
page 1562
icon of scanned page 1563
page 1563
icon of scanned page 1564
page 1564
Version history
  • Version 1 (August 1, 1970): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts