This study sought to elucidate the mechanism by which human red cells, in a variety of clinical settings, become coated in vivo with autologous complement components in the absence of anti-red cell autoantibodies demonstrable by standard methods. By means of a newly developed complement-fixing antibody consumption test, previously undetectable red cell-bound γG globulin could be detected and quantified. By this technique, the complement-coated red cells of 13 of 16 patients were shown to carry abnormally high numbers of γG molecules per cell, which were nevertheless below the level for detection by the direct antiglobulin test. Eluates were made from the red cells of seven of these patients and each eluate, when sufficiently concentrated, was capable of sensitizing normal human red cells (with γG antibodies) to give a positive indirect antiglobulin test with anti-γG serum. In the presence of fresh normal serum, six of the eluates so tested were capable of fixing complement to normal human red cells. The antibodies in the red cell eluates did not exhibit Rh specificity and did not react with nonprimate red cells. When studied by sucrose gradient ultracentrifugation, the γG antibodies to human red cells in these eluates sedimented in the 7S region. It is concluded that in many patients in whom direct antiglobulin tests reveal only cell-bound complement, the complement fixation is mediated in vivo by small quantities of “warm-reacting” erythrocyte autoantibodies of the γG class.
Bruce C. Gilliland, John P. Leddy, John H. Vaughan
Usage data is cumulative from February 2024 through February 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 121 | 5 |
48 | 43 | |
Scanned page | 274 | 9 |
Citation downloads | 34 | 0 |
Totals | 477 | 57 |
Total Views | 534 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.