Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article (19)

Advertisement

Research Article Free access | 10.1172/JCI106236

A new method for the measurement of acute alterations in thyroxine deiodination rate in man

John T. Nicoloff

Department of Medicine, University of Southern California School of Medicine and Los Angeles County/University of Southern California Medical Center, Los Angeles, California 90033

Find articles by Nicoloff, J. in: PubMed | Google Scholar

Published February 1, 1970 - More info

Published in Volume 49, Issue 2 on February 1, 1970
J Clin Invest. 1970;49(2):267–273. https://doi.org/10.1172/JCI106236.
© 1970 The American Society for Clinical Investigation
Published February 1, 1970 - Version history
View PDF
Abstract

A newly devised dual labeled iodine isotopic method is described for the detection and quantitation of alterations in thyroxine (T4) deiodination rate in man. This method employs the principle of a constant 125I infusion to serve as a reference source for the generation of 131I derived from the deiodination of T4-131I. Measurement of these two iodide isotopes are made in serially timed urine collections and are expressed in terms of a ratio value. Using this technique, it was possible to measure accurately the effects of a single dose of 6-propylthiouracil (6-PTU) in producing inhibition of T4 deiodination in euthyroid subjects. It was also possible to assess the time of onset, duration of action, and degree of inhibition produced by 6-PTU. Employing single doses of 6-PTU, ranging from 100 to 1000 mg, there was found to be a log dose relationship with a degree of inhibition observed in T4 deiodination. In control studies T4 deiodination rate was found to be constant for periods ranging up to 72 hr in normal ambulating subjects. The acute administration of many other agents was employed in an attempt to alter the T4 deiodination rate. These included diphenylhydantoin, methimazole, triiodothyronine, thyroxine, thyroid stimulating hormone (TSH), adrenocorticotropin (ACTH), hydrocortisone, predinsolone, potassium iodide, epinephrine, and oxytocin. No detectable change in T4 deiodination rate was observed with these agents in the dosage ranges employed in this study. The lack of any observable alteration in the T4 deiodination rate in response to this array of drugs and hormones appears to indicate that the availability of T4 to intracellular sites of deiodination and possibly action is well modulated to resist abrupt changes.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 267
page 267
icon of scanned page 268
page 268
icon of scanned page 269
page 269
icon of scanned page 270
page 270
icon of scanned page 271
page 271
icon of scanned page 272
page 272
icon of scanned page 273
page 273
Version history
  • Version 1 (February 1, 1970): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article (19)

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts