Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI106065

Regulation of glutamine metabolism in vitro by bicarbonate ion and pH

David P. Simpson and Donald J. Sherrard

1Department of Medicine, University of Washington, School of Medicine, Seattle, Washington 98105

Find articles by Simpson, D. in: PubMed | Google Scholar

1Department of Medicine, University of Washington, School of Medicine, Seattle, Washington 98105

Find articles by Sherrard, D. in: PubMed | Google Scholar

Published June 1, 1969 - More info

Published in Volume 48, Issue 6 on June 1, 1969
J Clin Invest. 1969;48(6):1088–1096. https://doi.org/10.1172/JCI106065.
© 1969 The American Society for Clinical Investigation
Published June 1, 1969 - Version history
View PDF
Abstract

The effect of variations of medium pH and bicarbonate concentration on glutamine oxidation was studied in slices and mitochondria from dog renal cortex. Decreasing pH and bicarbonate concentration increased the rate of oxidation of glutamine-U-14C to 14CO2 in both slices and mitochondria, an effect comparable to the acute stimulation of glutamine utilization produced by metabolic acidosis. Decreases in the concentration of glutamate and α-ketoglutarate, which accompany metabolic acidosis in the intact animal, also occurred in tissue slices when pH and [HCO3-] were lowered; decrease in α-ketoglutarate but not in glutamate content occurred in mitochondria under these conditions. Study of independent variations of medium pH and [HCO3-] showed that simultaneous changes in both pH and [HCO3-] produced a greater effect on glutamine metabolism than did change in either of these parameters alone.

The rate of glutamine oxidation was also compared in tissue preparations from pairs of litter-mate dogs with chronic metabolic acidosis and alkalosis. No significant difference in the rate of glutamine oxidation was present in mitochondria from the two sets of animals. Slices from animals with chronic metabolic acidosis consistently oxidized glutamine at a more rapid rate than slices from alkalotic dogs both at high and at low concentrations of bicarbonate in the medium. We believe this difference is a result of the same mechanism which leads to the delayed increase in ammonium excretion during induction of metabolic acidosis.

The close parallel between the effects demonstrated here and the changes in ammonium production and glutamine utilization in the intact animal with metabolic acidosis suggest that the observed in vitro changes accurately represent the operation of the physiologic mechanism by which acid-base changes regulate ammonium excretion. The similarity between the changes in glutamine oxidation observed in this study and those described previously for citrate suggests that one control mechanism affects the metabolism of both citrate and glutamine. Thus, we believe that the increase in citrate clearance in metabolic alkalosis and the increase in glutamine utilization and ammonium production in metabolic acidosis reflect the operation of the same underlying biochemical mechanism. This mechanism permits changes in pH and [HCO3-] in the cellular environment to regulate the rate of mitochondrial uptake and oxidation of several physiologically important substrates.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 1088
page 1088
icon of scanned page 1089
page 1089
icon of scanned page 1090
page 1090
icon of scanned page 1091
page 1091
icon of scanned page 1092
page 1092
icon of scanned page 1093
page 1093
icon of scanned page 1094
page 1094
icon of scanned page 1095
page 1095
icon of scanned page 1096
page 1096
Version history
  • Version 1 (June 1, 1969): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts