Derivatives of guanidine, such as phenethylbiguanide, are potent inhibitors of mitochondrial respiration in vitro, but the relevance of this inhibition to their in vivo blood sugar-lowering action is not clear. We have studied the metabolism of pyruvate and long chain fatty acids by mitochondria from several tissues of guinea pigs and rats and observed the effects of phenethylbiguanide on these processes. The rate of pyruvate decarboxylation and of β-oxidation of long chain fatty acyl-CoA derivatives by guinea pig heart mitochondria in vitro has been found to exceed the flux of substrate through the citric acid cycle, both in the presence and absence of phosphate acceptor.
Frank Davidoff
Usage data is cumulative from May 2024 through May 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 233 | 10 |
77 | 16 | |
Scanned page | 475 | 4 |
Citation downloads | 65 | 0 |
Totals | 850 | 30 |
Total Views | 880 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.