Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

Increased synthesis of phospholipid during phagocytosis
Peter Elsbach
Peter Elsbach
Published October 1, 1968
Citation Information: J Clin Invest. 1968;47(10):2217-2229. https://doi.org/10.1172/JCI105907.
View: Text | PDF
Research Article

Increased synthesis of phospholipid during phagocytosis

  • Text
  • PDF
Abstract

Incorporation in vitro of 32P-labeled lysolecithin (LPC) or lysophosphatidylethanolamine (LPE) into respectively lecithin (PC) and phosphatidylethanolamine (PE) of rabbit granulocytes and alveolar macrophages was compared in the absence and in the presence of ingestible particles. Maximal synthesis of PC by intact cells occurred at added LPC concentrations of less than 0.05 mmole/liter, i.e., at levels found in plasma. Accumulation of PC-32P proceeded linearly for at least 30 min and varied directly with cell concentration. While per cell granulocytes and macrophages converted comparable amounts of medium LPC to cellular PC, per milligram of protein, the granulocytes were approximately four times more active than the much larger macrophages. After 30 min newly synthesized PC-32P represented as much as 5% of total granulocyte PC. For macrophages this fraction did not exceed 1%. Addition of polystyrene or zymosan particles to the cell suspension resulted in up to 3-fold stimulation of incorporation of LPC-32P or LPE-32P into their respective diacyl derivatives. This stimulation did not occur when the cells were homogenized. Breakdown of LPC to water-soluble products during phagocytosis of polystyrene particles was the same as at rest. By use of doubly labeled LPC, the mechanism of PC synthesis by the two cell types has been identified as direct acylation of medium LPC, both at rest and during engulfment. Evidence presented in the case of granulocytes suggests that the increased translocation of medium LPC-32P during phagocytosis and its conversion to PC represents net synthesis.

Authors

Peter Elsbach

×

Usage data is cumulative from May 2024 through May 2025.

Usage JCI PMC
Text version 133 3
PDF 35 12
Scanned page 411 6
Citation downloads 49 0
Totals 628 21
Total Views 649
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts