Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
Article has an altmetric score of 3

See more details

Referenced in 1 policy sources
12 readers on Mendeley
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI105706

Cholesterol synthesis in the squirrel monkey: relative rates of synthesis in various tissues and mechanisms of control

John M. Dietschy and Jean D. Wilson

Department of Internal Medicine, The University of Texas Southwestern Medical School at Dallas, Dallas, Texas

Find articles by Dietschy, J. in: JCI | PubMed | Google Scholar

Department of Internal Medicine, The University of Texas Southwestern Medical School at Dallas, Dallas, Texas

Find articles by Wilson, J. in: JCI | PubMed | Google Scholar

Published January 1, 1968 - More info

Published in Volume 47, Issue 1 on January 1, 1968
J Clin Invest. 1968;47(1):166–174. https://doi.org/10.1172/JCI105706.
© 1968 The American Society for Clinical Investigation
Published January 1, 1968 - Version history
View PDF
Abstract

Cholesterol synthesis has been extensively investigated in various tissues of lower mammals; however, there is little specific information concerning cholesterologenesis in the primate. Furthermore, experiments in whole animals suggest that important differences may exist in the features of cholesterologenesis in the dog and rat versus the monkey and man. Using the new world squirrel monkey, therefore, we performed the present studies to determine the rates of cholesterologenesis in various tissues per unit weight, to define the relative rates of whole organ synthesis, and to evaluate the operation of control mechanisms in these tissues.

In control animals fed a low cholesterol chow diet, the liver and ileum were the two most active sites for cholesterologenesis followed, in order, by the colon, esophagus, and proximal small bowel. Rates of synthesis in 10 other tissues tested were considerably lower than these found in the gastrointestinal tract. When rates of whole organ synthesis were calculated, three tissues, i.e., liver, bowel, and skin, accounted for 92% of the total demonstrable synthetic activity.

Following cholesterol feeding utilizing either a solid chow or liquid formula diet, marked suppression of hepatic cholesterologenesis occurred while synthesis in other organs remained essentially unaltered. Similarly, fasting animals for periods up to 96 hr resulted in suppression of synthesis in the liver, but not in various levels of the intestine. Finally, biliary diversion for 48 hr caused a twofold increase in hepatic cholesterologenesis and a six- to eightfold increase in sterol synthesis in the small but not the large intestine.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 166
page 166
icon of scanned page 167
page 167
icon of scanned page 168
page 168
icon of scanned page 169
page 169
icon of scanned page 170
page 170
icon of scanned page 171
page 171
icon of scanned page 172
page 172
icon of scanned page 173
page 173
icon of scanned page 174
page 174
Version history
  • Version 1 (January 1, 1968): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

Article has an altmetric score of 3
  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts

Referenced in 1 policy sources
12 readers on Mendeley
See more details