Advertisement
Research Article Free access | 10.1172/JCI105695
St. Elizabeth's Hospital and Tufts University School of Medicine, Boston, Massachusetts
*Received for publication 4 April 1967 and in revised form 7 August 1967.
Supported in part by Grant HE-10053 from the National Institutes of Health.
Address requests for reprints to Dr. Harry S. Jacob, St. Elizabeth's Hospital, 736 Cambridge Street, Brighton, Mass. 02135.
Find articles by Jacob, H. in: JCI | PubMed | Google Scholar
Published December 1, 1967 - More info
Hereditary spherocytosis (HS) red cells lose membrane lipids excessively during incubation in vitro. Individual phosphatides as well as cholesterol are lost in proportion to their content in membranes, suggesting that fragments of membrane are removed. Supplementation of HS red cells with glucose during incubation has no consistent protective effect, whereas diminishing the excessive sodium flux through these cells by suspending them in either sodium-free or hypertonic media prevents membrane fragmentation. The characteristic excessive increase in osmotic fragility which occurs in incubated HS red cells results both from inordinate accumulation of intracellular sodium ions which produces osmotic swelling, and from depletion of surface material which generates microspherocytosis. Inhibiting both of these processes by incubating HS red cells in sodium-free media completely prevents increases in osmotic fragility despite prolonged incubation.
Normal red cells rendered hyperpermeable to cations by exposure either to n-butanol or to inhibitors of membrane sulfhydryl groups, lose membrane lipid upon incubation in a similar fashion to untreated HS red cells; perfectly smooth microspherocytes, akin to those seen in HS, are thereby generated.
I conclude that depletion of membrane lipids in HS which leads to microspherocytosis is correlatable with the excessive cation flux and possibly to the stimulated metabolism of acidic phosphatides in these red cells. It is suggested that this relation is derived from the fact that these phosphatides are in some way involved in maintaining the proper alignment of repeating membrane lipoprotein units, and that this function is adversely affected when these molecules are turning over more rapidly in response to increased cation flux.
Images.