Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Bleomycin-induced pulmonary fibrosis in fibrinogen-null mice
Noboru Hattori, … , Richard H. Simon, Angela F. Drew
Noboru Hattori, … , Richard H. Simon, Angela F. Drew
Published December 1, 2000
Citation Information: J Clin Invest. 2000;106(11):1341-1350. https://doi.org/10.1172/JCI10531.
View: Text | PDF
Article Article has an altmetric score of 9

Bleomycin-induced pulmonary fibrosis in fibrinogen-null mice

  • Text
  • PDF
Abstract

Mice deleted for the plasminogen activator inhibitor-1 (PAI-1) gene are relatively protected from developing pulmonary fibrosis induced by bleomycin. We hypothesized that PAI-1 deficiency reduces fibrosis by promoting plasminogen activation and accelerating the clearance of fibrin matrices that accumulate within the damaged lung. In support of this hypothesis, we found that the lungs of PAI-1–/– mice accumulated less fibrin after injury than wild-type mice, due in part to enhanced fibrinolytic activity. To further substantiate the importance of fibrin removal as the mechanism by which PAI-1 deficiency limited bleomycin-induced fibrosis, bleomycin was administered to mice deficient in the gene for the Aα-chain of fibrinogen (fib). Contrary to our expectation, fib–/– mice developed pulmonary fibrosis to a degree similar to fib+/– littermate controls, which have a plasma fibrinogen level that is 70% of that of wild-type mice. Although elimination of fibrin from the lung was not in itself protective, the beneficial effect of PAI-1 deficiency was still associated with proteolytic activity of the plasminogen activation system. In particular, inhibition of plasmin activation and/or activity by tranexamic acid reversed both the accelerated fibrin clearance and the protective effect of PAI-1 deficiency. We conclude that protection from fibrosis by PAI-1 deficiency is dependent upon increased proteolytic activity of the plasminogen activation system; however, complete removal of fibrin is not sufficient to protect the lung.

Authors

Noboru Hattori, Jay L. Degen, Thomas H. Sisson, Hong Liu, Bethany B. Moore, Raj G. Pandrangi, Richard H. Simon, Angela F. Drew

×

Figure 2

Options: View larger image (or click on image) Download as PowerPoint
Dynamics of fibrin accumulation in bleomycin-exposed mice. Bleomycin (2....
Dynamics of fibrin accumulation in bleomycin-exposed mice. Bleomycin (2.5 U/kg) or PBS was instilled intratracheally into PAI-1–/– and PAI-1+/+ mice. (a) To measure tissue fibrin content, lungs were harvested from heparinized mice on the days indicated and were processed as described in Methods. As positive and negative controls, fibrin samples formed within thrombin-treated plasma and anticoagulated plasma were prepared and processed in an identical manner. Samples were separated by SDS-PAGE and then immunoblotted to detect plasmin-generated, fibrin-derived γ-γ dimer fragment. (b) Vascular permeability was measured 7 days and 14 days after bleomycin administration, using lung accumulation of Evans blue dye that was injected intravenously 1 hour before sacrifice. Data are expressed as mean ± SEM; n = 7 for bleomycin-injured mice, n = 3 for PBS control mice. (c) The rate of fibrin degradation was measured in lungs of PAI-1–/– and PAI-1+/+ mice 7 days and 14 days after intratracheal instillation of PBS or bleomycin. At the time of sacrifice, fibrin was formed within pulmonary airspaces by intratracheally instilling fluorescein-labeled fibrinogen, plasminogen, and thrombin. After 5 hours, the percent of soluble fluorescent material was measured. Data are expressed as mean ± SEM; n = 4–7 mice per group.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts

Referenced in 16 patents
68 readers on Mendeley
See more details