In this issue of the JCI, Guo et al. demonstrate a critical role for NRG4, an adipose tissue-derived endocrine factor, in gating the transition from hepatic steatosis to nonalcoholic steatohepatitis (NASH). NRG4 signaling in hepatocytes protects against cell death and symptoms of NASH, including liver injury, inflammation, and fibrosis. The cover image depicts adipose tissue, the source of NRG4, with lipid droplets indicated in green and cell membranes in red. Image credit: Guo-Xiao Wang and Stephanie King.
The discovery, characterization, and clinical development of glucagon-like-peptide-1 (GLP-1) spans more than 30 years and includes contributions from multiple investigators, science recognized by the 2017 Harrington Award Prize for Innovation in Medicine. Herein, we provide perspectives on the historical events and key experimental findings establishing the biology of GLP-1 as an insulin-stimulating glucoregulatory hormone. Important attributes of GLP-1 action and enteroendocrine science are reviewed, with emphasis on mechanistic advances and clinical proof-of-concept studies. The discovery that GLP-2 promotes mucosal growth in the intestine is described, and key findings from both preclinical studies and the GLP-2 clinical development program for short bowel syndrome (SBS) are reviewed. Finally, we summarize recent progress in GLP biology, highlighting emerging concepts and scientific insights with translational relevance.
Daniel J. Drucker, Joel F. Habener, Jens Juul Holst
Ubiquitylation is a tightly regulated process that is essential for appropriate cell survival and function, and the ubiquitin pathway has shown promise as a therapeutic target for several forms of cancer. In this issue of the JCI, Kedves and colleagues report the identification of a subset of gynecological cancers with repressed expression of the polyubiquitin gene UBB, which renders these cancer cells sensitive to further decreases in ubiquitin production by inhibition of the polyubiquitin gene UBC. Moreover, inducible depletion of UBC in mice harboring tumors with low UBB levels dramatically decreased tumor burden and prolonged survival. Together, the results of this study indicate that there is a synthetic lethal relationship between UBB and UBC that has potential to be exploited as a therapeutic strategy to fight these devastating cancers.
Diane L. Haakonsen, Michael Rape
Mobilization of hematopoietic stem and progenitor cells (HSPCs) from the bone marrow (BM) into the peripheral blood is a complex process that is enhanced dramatically under stress-induced conditions. A better understanding of how the mobilization process is regulated will likely facilitate the development of improved clinical protocols for stem cell harvesting and transplantation. In this issue of the JCI, Singh et al. (1) showed that the truncated cleaved form of neurotransmitter neuropeptide Y (NPY) actively promotes a breach of BM vascular sinusoidal portals, thereby augmenting HSPC trafficking to the circulation. The authors report a previously unrecognized axis, in which expression of the enzyme dipeptidylpeptidase-4 (DPP4)/CD26 by endothelial cells activates NPY-mediated signaling by increasing the bioavailability of the truncated form of NPY. These findings underscore the importance of and urgency to develop pharmacological therapies that target the vasculature and regulate diverse aspects of hematopoiesis, such as HSPC trafficking, in steady-state and stress-induced conditions.
Tomer Itkin, Jesús María Gómez-Salinero, Shahin Rafii
The NLRP3 inflammasome is a critical component of the innate immune system and can be activated in response to microbial and endogenous danger signals. Activation of the NLRP3 inflammasome results in caspase-1–dependent secretion of the proinflammatory cytokines IL-1β and IL-18. Gain-of-function missense mutations in NLRP3 result in a group of autoinflammatory diseases collectively known as the cryopyrin-associated periodic syndromes (CAPS). CAPS patients have traditionally been successfully treated with therapeutics targeting the IL-1 pathway; however, there are a number of identified CAPS patients who show only a partial response to IL-1 blockade. In this issue of the JCI, McGeough et al. demonstrated that TNF-α, in addition to IL-1β, plays an important role in promoting NLRP3 inflammasomopathies.
Balaji Banoth, Fayyaz S. Sutterwala
The prevalence of food allergies has been increasing at an alarming rate over the last few decades. Despite the dramatic increase in disease prevalence, the development of effective therapies has not kept pace. In this issue of the JCI, Ando et al. provide a causal link between histamine-releasing factor (HRF) interactions with IgE and food allergy in a murine model. Successful oral immunotherapy of both egg-allergic human patients and food-allergic mice was associated with sustained suppression of HRF-reactive IgE levels. These results support a role for HRF-IgE interactions in the amplification of intestinal inflammation and suggest HRF as a therapeutic target in food allergy.
Marsha Wills-Karp
Deficiency in Krüppel-like zinc finger transcription factor GLI-similar 3 (GLIS3) in humans is associated with the development of congenital hypothyroidism. However, the functions of GLIS3 in the thyroid gland and the mechanism by which GLIS3 dysfunction causes hypothyroidism are unknown. In the current study, we demonstrate that GLIS3 acts downstream of thyroid-stimulating hormone (TSH) and TSH receptor (TSHR) and is indispensable for TSH/TSHR-mediated proliferation of thyroid follicular cells and biosynthesis of thyroid hormone. Using ChIP-Seq and promoter analysis, we demonstrate that GLIS3 is critical for the transcriptional activation of several genes required for thyroid hormone biosynthesis, including the iodide transporters Nis and Pds, both of which showed enhanced GLIS3 binding at their promoters. The repression of cell proliferation of GLIS3-deficient thyroid follicular cells was due to the inhibition of TSH-mediated activation of the mTOR complex 1/ribosomal protein S6 (mTORC1/RPS6) pathway as well as the reduced expression of several cell division–related genes regulated directly by GLIS3. Consequently, GLIS3 deficiency in a murine model prevented the development of goiter as well as the induction of inflammatory and fibrotic genes during chronic elevation of circulating TSH. Our study identifies GLIS3 as a key regulator of TSH/TSHR-mediated thyroid hormone biosynthesis and proliferation of thyroid follicular cells and uncovers a mechanism by which GLIS3 deficiency causes neonatal hypothyroidism and prevents goiter development.
Hong Soon Kang, Dhirendra Kumar, Grace Liao, Kristin Lichti-Kaiser, Kevin Gerrish, Xiao-Hui Liao, Samuel Refetoff, Raja Jothi, Anton M. Jetten
Angiocrine factors, such as Notch ligands, supplied by the specialized endothelial cells (ECs) within the bone marrow and splenic vascular niche play an essential role in modulating the physiology of adult hematopoietic stem and progenitor cells (HSPCs). However, the relative contribution of various Notch ligands, specifically jagged-2, to the homeostasis of HSPCs is unknown. Here, we show that under steady state, jagged-2 is differentially expressed in tissue-specific vascular beds, but its expression is induced in hematopoietic vascular niches after myelosuppressive injury. We used mice with EC-specific deletion of the gene encoding jagged-2 (Jag2) to demonstrate that while EC-derived jagged-2 was dispensable for maintaining the capacity of HSPCs to repopulate under steady-state conditions, by activating Notch2 it did contribute to the recovery of HSPCs in response to myelosuppressive conditions. Engraftment and/or expansion of HSPCs was dependent on the expression of endothelial-derived jagged-2 following myeloablation. Additionally, jagged-2 expressed in bone marrow ECs regulated HSPC cell cycle and quiescence during regeneration. Endothelial-deployed jagged-2 triggered Notch2/Hey1, while tempering Notch2/Hes1 signaling in HSPCs. Collectively, these data demonstrate that EC-derived jagged-2 activates Notch2 signaling in HSPCs to promote hematopoietic recovery and has potential as a therapeutic target to accelerate balanced hematopoietic reconstitution after myelosuppression.
Peipei Guo, Michael G. Poulos, Brisa Palikuqi, Chaitanya R. Badwe, Raphael Lis, Balvir Kunar, Bi-Sen Ding, Sina Y. Rabbany, Koji Shido, Jason M. Butler, Shahin Rafii
Steroid-resistant nephrotic syndrome (SRNS) is a frequent cause of chronic kidney disease. Here, we identified recessive mutations in the gene encoding the actin-binding protein advillin (AVIL) in 3 unrelated families with SRNS. While all AVIL mutations resulted in a marked loss of its actin-bundling ability, truncation of AVIL also disrupted colocalization with F-actin, thereby leading to impaired actin binding and severing. Additionally, AVIL colocalized and interacted with the phospholipase enzyme PLCE1 and with the ARP2/3 actin-modulating complex. Knockdown of AVIL in human podocytes reduced actin stress fibers at the cell periphery, prevented recruitment of PLCE1 to the ARP3-rich lamellipodia, blocked EGF-induced generation of diacylglycerol (DAG) by PLCE1, and attenuated the podocyte migration rate (PMR). These effects were reversed by overexpression of WT AVIL but not by overexpression of any of the 3 patient-derived AVIL mutants. The PMR was increased by overexpression of WT Avil or PLCE1, or by EGF stimulation; however, this increased PMR was ameliorated by inhibition of the ARP2/3 complex, indicating that ARP-dependent lamellipodia formation occurs downstream of AVIL and PLCE1 function. Together, these results delineate a comprehensive pathogenic axis of SRNS that integrates loss of AVIL function with alterations in the action of PLCE1, an established SRNS protein.
Jia Rao, Shazia Ashraf, Weizhen Tan, Amelie T. van der Ven, Heon Yung Gee, Daniela A. Braun, Krisztina Fehér, Sudeep P. George, Amin Esmaeilniakooshkghazi, Won-Il Choi, Tilman Jobst-Schwan, Ronen Schneider, Johanna Magdalena Schmidt, Eugen Widmeier, Jillian K. Warejko, Tobias Hermle, David Schapiro, Svjetlana Lovric, Shirlee Shril, Ankana Daga, Ahmet Nayir, Mohan Shenoy, Yincent Tse, Martin Bald, Udo Helmchen, Sevgi Mir, Afig Berdeli, Jameela A. Kari, Sherif El Desoky, Neveen A. Soliman, Arvind Bagga, Shrikant Mane, Mohamad A. Jairajpuri, Richard P. Lifton, Seema Khurana, Jose C. Martins, Friedhelm Hildebrandt
Attention-deficit/hyperactivity disorder (ADHD) is a prevalent psychiatric disorder in children. Although an imbalance of excitatory and inhibitory inputs has been proposed as contributing to this disorder, the mechanisms underlying this highly heterogeneous disease remain largely unknown. Here, we show that N-myc downstream-regulated gene 2 (NDRG2) deficiency is involved in the development of ADHD in both mice and humans. Ndrg2-knockout (Ndrg2–/–) mice exhibited ADHD-like symptoms characterized by attention deficits, hyperactivity, impulsivity, and impaired memory. Furthermore, interstitial glutamate levels and excitatory transmission were markedly increased in the brains of Ndrg2–/– mice due to reduced astroglial glutamate clearance. We developed an NDRG2 peptide that rescued astroglial glutamate clearance and reduced excitatory glutamate transmission in NDRG2-deficient astrocytes. Additionally, NDRG2 peptide treatment rescued ADHD-like hyperactivity in the Ndrg2–/– mice, while routine methylphenidate treatment had no effect on hyperactivity in these animals. Finally, children who were heterozygous for rs1998848, a SNP in NDRG2, had a higher risk of ADHD than children who were homozygous for rs1998848. Our results indicate that NDRG2 deficiency leads to ADHD phenotypes and that impaired astroglial glutamate clearance, a mechanism distinct from the well-established dopamine deficit hypothesis for ADHD, underlies the resultant behavioral abnormalities.
Yan Li, Anqi Yin, Xin Sun, Ming Zhang, Jianfang Zhang, Ping Wang, Rougang Xie, Wen Li, Ze Fan, Yuanyuan Zhu, Han Wang, Hailong Dong, Shengxi Wu, Lize Xiong
Induction of the cell cycle is emerging as an intervention to treat heart failure. Here, we tested the hypothesis that enhanced cardiomyocyte renewal in transgenic mice expressing cyclin D2 would be beneficial during hemodynamic overload. We induced pressure overload by transthoracic aortic constriction (TAC) or volume overload by aortocaval shunt in cyclin D2–expressing and WT mice. Although cyclin D2 expression dramatically improved survival following TAC, it did not confer a survival advantage to mice following aortocaval shunt. Cardiac function decreased following TAC in WT mice, but was preserved in cyclin D2–expressing mice. On the other hand, cardiac structure and function were compromised in response to aortocaval shunt in both WT and cyclin D2–expressing mice. The preserved function and improved survival in cyclin D2–expressing mice after TAC was associated with an approximately 50% increase in cardiomyocyte number and exaggerated cardiac hypertrophy, as indicated by increased septum thickness. Aortocaval shunt did not further impact cardiomyocyte number in mice expressing cyclin D2. Following TAC, cyclin D2 expression attenuated cardiomyocyte hypertrophy, reduced cardiomyocyte apoptosis, fibrosis, calcium/calmodulin–dependent protein kinase IIδ phosphorylation, brain natriuretic peptide expression, and sustained capillarization. Thus, we show that cyclin D2–induced cardiomyocyte renewal reduced myocardial remodeling and dysfunction after pressure overload but not after volume overload.
Karl Toischer, Wuqiang Zhu, Mark Hünlich, Belal A. Mohamed, Sara Khadjeh, Sean P. Reuter, Katrin Schäfer, Deepak Ramanujam, Stefan Engelhardt, Loren J. Field, Gerd Hasenfuss
The transcription factor PU.1 is often impaired in patients with acute myeloid leukemia (AML). Here, we used AML cells that already had low PU.1 levels and further inhibited PU.1 using either RNA interference or, to our knowledge, first-in-class small-molecule inhibitors of PU.1 that we developed specifically to allosterically interfere with PU.1-chromatin binding through interaction with the DNA minor groove that flanks PU.1-binding motifs. These small molecules of the heterocyclic diamidine family disrupted the interaction of PU.1 with target gene promoters and led to downregulation of canonical PU.1 transcriptional targets. shRNA or small-molecule inhibition of PU.1 in AML cells from either PU.1lo mutant mice or human patients with AML-inhibited cell growth and clonogenicity and induced apoptosis. In murine and human AML (xeno)transplantation models, treatment with our PU.1 inhibitors decreased tumor burden and resulted in increased survival. Thus, our study provides proof of concept that PU.1 inhibition has potential as a therapeutic strategy for the treatment of AML and for the development of small-molecule inhibitors of PU.1.
Iléana Antony-Debré, Ananya Paul, Joana Leite, Kelly Mitchell, Hye Mi Kim, Luis A. Carvajal, Tihomira I. Todorova, Kenneth Huang, Arvind Kumar, Abdelbasset A. Farahat, Boris Bartholdy, Swathi-Rao Narayanagari, Jiahao Chen, Alberto Ambesi-Impiombato, Adolfo A. Ferrando, Ioannis Mantzaris, Evripidis Gavathiotis, Amit Verma, Britta Will, David W. Boykin, W. David Wilson, Gregory M.K. Poon, Ulrich Steidl
Adaptation to respiration at birth depends upon the synthesis of pulmonary surfactant, a lipid-protein complex that reduces surface tension at the air-liquid interface in the alveoli and prevents lung collapse during the ventilatory cycle. Herein, we demonstrated that the gene encoding a subunit of the endoplasmic reticulum membrane complex, EMC3, also known as TMEM111 (Emc3/Tmem111), was required for murine pulmonary surfactant synthesis and lung function at birth. Conditional deletion of Emc3 in murine embryonic lung epithelial cells disrupted the synthesis and packaging of surfactant lipids and proteins, impaired the formation of lamellar bodies, and induced the unfolded protein response in alveolar type 2 (AT2) cells. EMC3 was essential for the processing and routing of surfactant proteins, SP-B and SP-C, and the biogenesis of the phospholipid transport protein ABCA3. Transcriptomic, lipidomic, and proteomic analyses demonstrated that EMC3 coordinates the assembly of lipids and proteins in AT2 cells that is necessary for surfactant synthesis and function at birth.
Xiaofang Tang, John M. Snowball, Yan Xu, Cheng-Lun Na, Timothy E. Weaver, Geremy Clair, Jennifer E. Kyle, Erika M. Zink, Charles Ansong, Wei Wei, Meina Huang, Xinhua Lin, Jeffrey A. Whitsett
Apoptosis delimits platelet life span in the circulation and leads to storage lesion, which severely limits the shelf life of stored platelets. Moreover, accumulating evidence indicates that platelet apoptosis provoked by various pathological stimuli results in thrombocytopenia in many common diseases. However, little is known about how platelet apoptosis is initiated or regulated. Here, we show that PKA activity is markedly reduced in platelets aged in vitro, stored platelets, and platelets from patients with immune thrombocytopenia (ITP), diabetes, and bacterial infections. Inhibition or genetic ablation of PKA provoked intrinsic programmed platelet apoptosis in vitro and rapid platelet clearance in vivo. PKA inhibition resulted in dephosphorylation of the proapoptotic protein BAD at Ser155, resulting in sequestration of prosurvival protein BCL-XL in mitochondria and subsequent apoptosis. Notably, PKA activation protected platelets from apoptosis induced by storage or pathological stimuli and elevated peripheral platelet levels in normal mice and in a murine model of ITP. Therefore, these findings identify PKA as a homeostatic regulator of platelet apoptosis that determines platelet life span and survival. Furthermore, these results suggest that regulation of PKA activity represents a promising strategy for extending platelet shelf life and has profound implications for the treatment of platelet number-related diseases and disorders.
Lili Zhao, Jun Liu, Chunyan He, Rong Yan, Kangxi Zhou, Qingya Cui, Xingjun Meng, Xiaodong Li, Yang Zhang, Yumei Nie, Yang Zhang, Renping Hu, Yancai Liu, Lian Zhao, Mengxing Chen, Weiling Xiao, Jingluan Tian, Yunxiao Zhao, Lijuan Cao, Ling Zhou, Anning Lin, Changgeng Ruan, Kesheng Dai
Type I IFN production is essential for innate control of acute viral infection; however, prolonged high-level IFN production is associated with chronic immune activation in HIV-infected individuals. Although plasmacytoid DCs (pDCs) are a primary source of IFN, the mechanisms that regulate IFN levels following the acute phase are unknown. We hypothesized that HIV-specific Ab responses regulate late IFN production. We evaluated the mechanism through which HIV-activated pDCs produce IFN as well as how both monoclonal HIV-specific Abs and Abs produced in natural HIV infection modulated normal pDC sensing of HIV. We found that HIV-induced IFN production required TLR7 signaling, receptor-mediated entry, fusion, and viral uncoating, but not endocytosis or HIV life cycle stages after uncoating. Abs directed against the HIV envelope that do not interfere with CD4 binding markedly enhanced the IFN response, irrespective of their ability to neutralize CD4+ T cell infection. Ab-mediated enhancement of IFN production required Fc γ receptor engagement, bypassed fusion, and initiated signaling through both TLR7 and TLR9, which was not utilized in the absence of Ab. Polyclonal Abs isolated from HIV-infected subjects also enhanced pDC production of IFN in response to HIV. Our data provide an explanation for high levels of IFN production and immune activation in chronic HIV infection.
Rebecca T. Veenhuis, Zachary T. Freeman, Jack Korleski, Laura K. Cohen, Guido Massaccesi, Alessandra Tomasi, Austin W. Boesch, Margaret E. Ackerman, Joseph B. Margolick, Joel N. Blankson, Michael A. Chattergoon, Andrea L. Cox
Molybdenum cofactor deficiency (MoCD) is an autosomal recessive inborn error of metabolism characterized by neurodegeneration and death in early childhood. The rapid and progressive neurodegeneration in MoCD presents a major clinical challenge and may relate to the poor understanding of the molecular mechanisms involved. Recently, we reported that treating patients with cyclic pyranopterin monophosphate (cPMP) is a successful therapy for a subset of infants with MoCD and prevents irreversible brain damage. Here, we studied S-sulfocysteine (SSC), a structural analog of glutamate that accumulates in the plasma and urine of patients with MoCD, and demonstrated that it acts as an N-methyl D-aspartate receptor (NMDA-R) agonist, leading to calcium influx and downstream cell signaling events and neurotoxicity. SSC treatment activated the protease calpain, and calpain-dependent degradation of the inhibitory synaptic protein gephyrin subsequently exacerbated SSC-mediated excitotoxicity and promoted loss of GABAergic synapses. Pharmacological blockade of NMDA-R, calcium influx, or calpain activity abolished SSC and glutamate neurotoxicity in primary murine neurons. Finally, the NMDA-R antagonist memantine was protective against the manifestation of symptoms in a tungstate-induced MoCD mouse model. These findings demonstrate that SSC drives excitotoxic neurodegeneration in MoCD and introduce NMDA-R antagonists as potential therapeutics for this fatal disease.
Avadh Kumar, Borislav Dejanovic, Florian Hetsch, Marcus Semtner, Debora Fusca, Sita Arjune, Jose Angel Santamaria-Araujo, Aline Winkelmann, Scott Ayton, Ashley I. Bush, Peter Kloppenburg, Jochen C. Meier, Guenter Schwarz, Abdel Ali Belaidi
Glucagon plays a major role in the regulation of glucose homeostasis during fed and fasting states. However, the mechanisms responsible for the regulation of pancreatic α cell mass and function are not completely understood. In the current study, we identified mTOR complex 1 (mTORC1) as a major regulator of α cell mass and glucagon secretion. Using mice with tissue-specific deletion of the mTORC1 regulator Raptor in α cells (αRaptorKO), we showed that mTORC1 signaling is dispensable for α cell development, but essential for α cell maturation during the transition from a milk-based diet to a chow-based diet after weaning. Moreover, inhibition of mTORC1 signaling in αRaptorKO mice and in WT animals exposed to chronic rapamycin administration decreased glucagon content and glucagon secretion. In αRaptorKO mice, impaired glucagon secretion occurred in response to different secretagogues and was mediated by alterations in KATP channel subunit expression and activity. Additionally, our data identify the mTORC1/FoxA2 axis as a link between mTORC1 and transcriptional regulation of key genes responsible for α cell function. Thus, our results reveal a potential function of mTORC1 in nutrient-dependent regulation of glucagon secretion and identify a role for mTORC1 in controlling α cell–mass maintenance.
Nadejda Bozadjieva, Manuel Blandino-Rosano, Jennifer Chase, Xiao-Qing Dai, Kelsey Cummings, Jennifer Gimeno, Danielle Dean, Alvin C. Powers, George K. Gittes, Markus A. Rüegg, Michael N. Hall, Patrick E. MacDonald, Ernesto Bernal-Mizrachi
Unbiased, “nontargeted” metabolite profiling techniques hold considerable promise for biomarker and pathway discovery, in spite of the lack of successful applications to human disease. By integrating nontargeted metabolomics, genetics, and detailed human phenotyping, we identified dimethylguanidino valeric acid (DMGV) as an independent biomarker of CT-defined nonalcoholic fatty liver disease (NAFLD) in the offspring cohort of the Framingham Heart Study (FHS) participants. We verified the relationship between DMGV and early hepatic pathology. Specifically, plasma DMGV levels were correlated with biopsy-proven nonalcoholic steatohepatitis (NASH) in a hospital cohort of individuals undergoing gastric bypass surgery, and DMGV levels fell in parallel with improvements in post-procedure cardiometabolic parameters. Further, baseline DMGV levels independently predicted future diabetes up to 12 years before disease onset in 3 distinct human cohorts. Finally, we provide all metabolite peak data consisting of known and unidentified peaks, genetics, and key metabolic parameters as a publicly available resource for investigations in cardiometabolic diseases.
John F. O’Sullivan, Jordan E. Morningstar, Qiong Yang, Baohui Zheng, Yan Gao, Sarah Jeanfavre, Justin Scott, Celine Fernandez, Hui Zheng, Sean O’Connor, Paul Cohen, Ramachandran S. Vasan, Michelle T. Long, James G. Wilson, Olle Melander, Thomas J. Wang, Caroline Fox, Randall T. Peterson, Clary B. Clish, Kathleen E. Corey, Robert E. Gerszten
Astrocytes perform critical non–cell autonomous roles following CNS injury that involve either neurotoxic or neuroprotective effects. Yet the nature of potential prosurvival cues has remained unclear. In the current study, we utilized the close interaction between astrocytes and retinal ganglion cells (RGCs) in the eye to characterize a secreted neuroprotective signal present in retinal astrocyte conditioned medium (ACM). Rather than a conventional peptide neurotrophic factor, we identified a prominent lipid component of the neuroprotective signal through metabolomics screening. The lipoxins LXA4 and LXB4 are small lipid mediators that act locally to dampen inflammation, but they have not been linked directly to neuronal actions. Here, we determined that LXA4 and LXB4 are synthesized in the inner retina, but their levels are reduced following injury. Injection of either lipoxin was sufficient for neuroprotection following acute injury, while inhibition of key lipoxin pathway components exacerbated injury-induced damage. Although LXA4 signaling has been extensively investigated, LXB4, the less studied lipoxin, emerged to be more potent in protection. Moreover, LXB4 neuroprotection was different from that of established LXA4 signaling, and therapeutic LXB4 treatment was efficacious in a chronic model of the common neurodegenerative disease glaucoma. Together, these results identify a potential paracrine mechanism that coordinates neuronal homeostasis and inflammation in the CNS.
Izhar Livne-Bar, Jessica Wei, Hsin-Hua Liu, Samih Alqawlaq, Gah-Jone Won, Alessandra Tuccitto, Karsten Gronert, John G. Flanagan, Jeremy M. Sivak
Primary immunodeficiencies are often monogenic disorders characterized by vulnerability to specific infectious pathogens. Here, we performed whole-exome sequencing of a patient with disseminated Mycobacterium abscessus, Streptococcus viridians bacteremia, and cytomegalovirus (CMV) viremia and identified mutations in 2 genes that regulate distinct IFN pathways. The patient had a homozygous frameshift deletion in IFNGR2, which encodes the signal transducing chain of the IFN-γ receptor, that resulted in minimal protein expression and abolished downstream signaling. The patient also harbored a homozygous deletion in IFNAR1 (IFNAR1*557Gluext*46), which encodes the IFN-α receptor signaling subunit. The IFNAR1*557Gluext*46 resulted in replacement of the stop codon with 46 additional codons at the C-terminus. The level of IFNAR1*557Gluext*46 mutant protein expressed in patient fibroblasts was comparable to levels of WT IFNAR1 in control fibroblasts. IFN-α–induced signaling was impaired in the patient fibroblasts, as evidenced by decreased STAT1/STAT2 phosphorylation, nuclear translocation of STAT1, and expression of IFN-α–stimulated genes critical for CMV immunity. Pretreatment with IFN-α failed to suppress CMV protein expression in patient fibroblasts, whereas expression of WT IFNAR1 restored IFN-α–mediated suppression of CMV. This study identifies a human IFNAR1 mutation and describes a digenic immunodeficiency specific to type I and type II IFNs.
Rodrigo Hoyos-Bachiloglu, Janet Chou, Catherine N. Sodroski, Abdallah Beano, Wayne Bainter, Magdalena Angelova, Eman Al Idrissi, Murad K. Habazi, Hamza Ali Alghamdi, Fahd Almanjomi, Mohamed Al Shehri, Nagi Elsidig, Morsi Alaa Eldin, David M. Knipe, Mofareh AlZahrani, Raif S. Geha
Primary congenital glaucoma (PCG) is a leading cause of blindness in children worldwide and is caused by developmental defects in 2 aqueous humor outflow structures, Schlemm’s canal (SC) and the trabecular meshwork. We previously identified loss-of-function mutations in the angiopoietin (ANGPT) receptor TEK in families with PCG and showed that ANGPT/TEK signaling is essential for SC development. Here, we describe roles for the major ANGPT ligands in the development of the aqueous outflow pathway. We determined that ANGPT1 is essential for SC development, and that Angpt1-knockout mice form a severely hypomorphic canal with elevated intraocular pressure. By contrast, ANGPT2 was dispensable, although mice deficient in both Angpt1 and Angpt2 completely lacked SC, indicating that ANGPT2 compensates for the loss of ANGPT1. In addition, we identified 3 human subjects with rare ANGPT1 variants within an international cohort of 284 PCG patients. Loss of function in 2 of the 3 patient alleles was observed by functional analysis of ANGPT1 variants in a combined in silico, in vitro, and in vivo approach, supporting a causative role for ANGPT1 in disease. By linking ANGPT1 with PCG, these results highlight the importance of ANGPT/TEK signaling in glaucoma pathogenesis and identify a candidate target for therapeutic development.
Benjamin R. Thomson, Tomokazu Souma, Stuart W. Tompson, Tuncer Onay, Krishnakumar Kizhatil, Owen M. Siggs, Liang Feng, Kristina N. Whisenhunt, Tammy L. Yanovitch, Luba Kalaydjieva, Dimitar N. Azmanov, Simone Finzi, Christine E. Tanna, Alex W. Hewitt, David A. Mackey, Yasmin S. Bradfield, Emmanuelle Souzeau, Shari Javadiyan, Janey L. Wiggs, Francesca Pasutto, Xiaorong Liu, Simon W.M. John, Jamie E. Craig, Jing Jin, Terri L. Young, Susan E. Quaggin
Ebolaviruses and marburgviruses belong to the family Filoviridae and cause high lethality in infected patients. There are currently no licensed filovirus vaccines or antiviral therapies. The development of broad-spectrum therapies against members of the Marburgvirus genus, including Marburg virus (MARV) and Ravn virus (RAVV), is difficult because of substantial sequence variability. RNAi therapeutics offer a potential solution, as identification of conserved target nucleotide sequences may confer activity across marburgvirus variants. Here, we assessed the therapeutic efficacy of lipid nanoparticle (LNP) delivery of a single nucleoprotein–targeting (NP-targeting) siRNA in nonhuman primates at advanced stages of MARV or RAVV disease to mimic cases in which patients begin treatment for fulminant disease. Sixteen rhesus monkeys were lethally infected with MARV or RAVV and treated with NP siRNA-LNP, with MARV-infected animals beginning treatment four or five days after infection and RAVV-infected animals starting treatment three or six days after infection. While all untreated animals succumbed to disease, NP siRNA-LNP treatment conferred 100% survival of RAVV-infected macaques, even when treatment began just 1 day prior to the death of the control animals. In MARV-infected animals, day-4 treatment initiation resulted in 100% survival, and day-5 treatment resulted in 50% survival. These results identify a single siRNA therapeutic that provides broad-spectrum protection against both MARV and RAVV.
Emily P. Thi, Chad E. Mire, Amy C.H. Lee, Joan B. Geisbert, Raul Ursic-Bedoya, Krystle N. Agans, Marjorie Robbins, Daniel J. Deer, Robert W. Cross, Andrew S. Kondratowicz, Karla A. Fenton, Ian MacLachlan, Thomas W. Geisbert
Nonalcoholic steatohepatitis (NASH) is characterized by progressive liver injury, inflammation, and fibrosis; however, the mechanisms that govern the transition from hepatic steatosis, which is relatively benign, to NASH remain poorly defined. Neuregulin 4 (Nrg4) is an adipose tissue–enriched endocrine factor that elicits beneficial metabolic effects in obesity. Here, we show that Nrg4 is a key component of an endocrine checkpoint that preserves hepatocyte health and counters diet-induced NASH in mice. Nrg4 deficiency accelerated liver injury, fibrosis, inflammation, and cell death in a mouse model of NASH. In contrast, transgenic expression of Nrg4 in adipose tissue alleviated diet-induced NASH. Nrg4 attenuated hepatocyte death in a cell-autonomous manner by blocking ubiquitination and proteasomal degradation of c-FLIPL, a negative regulator of cell death. Adeno-associated virus–mediated (AAV-mediated) rescue of hepatic c-FLIPL expression in Nrg4-deficent mice functionally restored the brake for steatosis to NASH transition. Thus, hepatic Nrg4 signaling serves as an endocrine checkpoint for steatosis-to-NASH progression by activating a cytoprotective pathway to counter stress-induced liver injury.
Liang Guo, Peng Zhang, Zhimin Chen, Houjun Xia, Siming Li, Yanqiao Zhang, Sune Kobberup, Weiping Zou, Jiandie D. Lin
p120-Catenin (p120) functions as a tumor suppressor in intestinal cancer, but the mechanism is unclear. Here, using conditional p120 knockout in Apc-sensitized mouse models of intestinal cancer, we have identified p120 as an “obligatory” haploinsufficient tumor suppressor. Whereas monoallelic loss of p120 was associated with a significant increase in tumor multiplicity, loss of both alleles was never observed in tumors from these mice. Moreover, forced ablation of the second allele did not further enhance tumorigenesis, but instead induced synthetic lethality in combination with Apc loss of heterozygosity. In tumor-derived organoid cultures, elimination of both p120 alleles resulted in caspase-3–dependent apoptosis that was blocked by inhibition of Rho kinase (ROCK). With ROCK inhibition, however, p120-ablated organoids exhibited a branching phenotype and a substantial increase in cell proliferation. Access to data from Sleeping Beauty mutagenesis screens afforded an opportunity to directly assess the tumorigenic impact of p120 haploinsufficiency relative to other candidate drivers. Remarkably, p120 ranked third among the 919 drivers identified. Cofactors α-catenin and epithelial cadherin (E-cadherin) were also among the highest scoring candidates, indicating a mechanism at the level of the intact complex that may play an important role at very early stages of of intestinal tumorigenesis while simultaneously restricting outright loss via synthetic lethality.
Sarah P. Short, Jumpei Kondo, Whitney G. Smalley-Freed, Haruna Takeda, Michael R. Dohn, Anne E. Powell, Robert H. Carnahan, Mary K. Washington, Manish Tripathi, D. Michael Payne, Nancy A. Jenkins, Neal G. Copeland, Robert J. Coffey, Albert B. Reynolds
Regulation of skeletal muscle development and organization is a complex process that is not fully understood. Here, we focused on amphiphysin 2 (BIN1, also known as bridging integrator-1) and dynamin 2 (DNM2), two ubiquitous proteins implicated in membrane remodeling and mutated in centronuclear myopathies (CNMs). We generated Bin1–/– Dnm2+/– mice to decipher the physiological interplay between BIN1 and DNM2. While Bin1–/– mice die perinatally from a skeletal muscle defect, Bin1–/– Dnm2+/– mice survived at least 18 months, and had normal muscle force and intracellular organization of muscle fibers, supporting BIN1 as a negative regulator of DNM2. We next characterized muscle-specific isoforms of BIN1 and DNM2. While BIN1 colocalized with and partially inhibited DNM2 activity during muscle maturation, BIN1 had no effect on the isoform of DNM2 found in adult muscle. Together, these results indicate that BIN1 and DNM2 regulate muscle development and organization, function through a common pathway, and define BIN1 as a negative regulator of DNM2 in vitro and in vivo during muscle maturation. Our data suggest that DNM2 modulation has potential as a therapeutic approach for patients with CNM and BIN1 defects. As BIN1 is implicated in cancers, arrhythmia, and late-onset Alzheimer disease, these findings may trigger research directions and therapeutic development for these common diseases.
Belinda S. Cowling, Ivana Prokic, Hichem Tasfaout, Aymen Rabai, Frédéric Humbert, Bruno Rinaldi, Anne-Sophie Nicot, Christine Kretz, Sylvie Friant, Aurélien Roux, Jocelyn Laporte
The NLRP3 inflammasome is a protein complex responsible for caspase-1–dependent maturation of the proinflammatory cytokines IL-1β and IL-18. Gain-of-function missense mutations in NLRP3 cause the disease spectrum known as the cryopyrin-associated periodic syndromes (CAPS). In this study, we generated Nlrp3-knockin mice on various KO backgrounds including Il1b/Il18-, caspase-1–, caspase-11– (Casp1/11-), and Tnf-deficient strains. The Nlrp3L351P Il1b–/– Il18–/– mutant mice survived and grew normally until adulthood and, at 6 months of age, exhibited marked splenomegaly and leukophilia. Injection of these mice with low-dose LPS resulted in elevated serum TNF levels compared with Nlrp3L351P Casp1/11–/– mice and Il1b–/– Il18–/– littermates. Treatment of Nlrp3A350V mice with the TNF inhibitor etanercept resulted in all pups surviving to adulthood, with normal body and spleen/body weight ratios. Nlrp3A350V Tnf–/– mice showed a similar phenotypic rescue, with marked reductions in serum IL-1β and IL-18, reduced myeloid inflammatory infiltrate in the skin and spleen, and substantial decreases in splenic mRNA expression of both inflammasome components (Nlrp3, Pycard, pro-Casp1) and pro-cytokines (Il1b, Il18). Likewise, we observed a reduction in the expression of both pro-Casp1 and pro-Il1b in cultured Nlrp3A350V Tnf–/– BM-derived DCs. Our data show that TNF is an important transcriptional regulator of NLRP3 inflammasome components in murine inflammasomopathies. Moreover, these results may have therapeutic implications for CAPS patients with partial responses to IL-1–targeted therapies.
Matthew D. McGeough, Alexander Wree, Maria E. Inzaugarat, Ariela Haimovich, Casey D. Johnson, Carla A. Peña, Raphaela Goldbach-Mansky, Lori Broderick, Ariel E. Feldstein, Hal M. Hoffman
Conventional therapies for breast cancer brain metastases (BCBMs) have been largely ineffective because of chemoresistance and impermeability of the blood-brain barrier. A comprehensive understanding of the underlying mechanism that allows breast cancer cells to infiltrate the brain is necessary to circumvent treatment resistance of BCBMs. Here, we determined that expression of a long noncoding RNA (lncRNA) that we have named lncRNA associated with BCBM (Lnc-BM) is prognostic of the progression of brain metastasis in breast cancer patients. In preclinical murine models, elevated Lnc-BM expression drove BCBM, while depletion of Lnc-BM with nanoparticle-encapsulated siRNAs effectively treated BCBM. Lnc-BM increased JAK2 kinase activity to mediate oncostatin M– and IL-6–triggered STAT3 phosphorylation. In breast cancer cells, Lnc-BM promoted STAT3-dependent expression of ICAM1 and CCL2, which mediated vascular co-option and recruitment of macrophages in the brain, respectively. Recruited macrophages in turn produced oncostatin M and IL-6, thereby further activating the Lnc-BM/JAK2/STAT3 pathway and enhancing BCBM. Collectively, our results show that Lnc-BM and JAK2 promote BCBMs by mediating communication between breast cancer cells and the brain microenvironment. Moreover, these results suggest targeting Lnc-BM as a potential strategy for fighting this difficult disease.
Shouyu Wang, Ke Liang, Qingsong Hu, Ping Li, Jian Song, Yuedong Yang, Jun Yao, Lingegowda Selanere Mangala, Chunlai Li, Wenhao Yang, Peter K. Park, David H. Hawke, Jianwei Zhou, Yan Zhou, Weiya Xia, Mien-Chie Hung, Jeffrey R. Marks, Gary E. Gallick, Gabriel Lopez-Berestein, Elsa R. Flores, Anil K. Sood, Suyun Huang, Dihua Yu, Liuqing Yang, Chunru Lin
Abnormal activity of the renin-angiotensin-aldosterone system plays a causal role in the development of hypertension, atherosclerosis, and associated cardiovascular events such as myocardial infarction, stroke, and heart failure. As both a vasoconstrictor and a proinflammatory mediator, angiotensin II (Ang II) is considered a potential link between hypertension and atherosclerosis. However, a role for Ang II–induced inflammation in atherosclerosis has not been clearly established, and the molecular mechanisms and intracellular signaling pathways involved are not known. Here, we demonstrated that the RhoA GEF Arhgef1 is essential for Ang II–induced inflammation. Specifically, we showed that deletion of Arhgef1 in a murine model prevents Ang II–induced integrin activation in leukocytes, thereby preventing Ang II–induced recruitment of leukocytes to the endothelium. Mice lacking both LDL receptor (LDLR) and Arhgef1 were protected from high-fat diet–induced atherosclerosis. Moreover, reconstitution of Ldlr–/– mice with Arhgef1-deficient BM prevented high-fat diet–induced atherosclerosis, while reconstitution of Ldlr–/– Arhgef1–/– with WT BM exacerbated atherosclerotic lesion formation, supporting Arhgef1 activation in leukocytes as causal in the development of atherosclerosis. Thus, our data highlight the importance of Arhgef1 in cardiovascular disease and suggest targeting Arhgef1 as a potential therapeutic strategy against atherosclerosis.
Maria Luigia Carbone, Gilliane Chadeuf, Sandrine Heurtebise-Chrétien, Xavier Prieur, Thibault Quillard, Yann Goueffic, Nathalie Vaillant, Marc Rio, Laure Castan, Maxim Durand, Céline Baron-Menguy, Julien Aureille, Juliette Desfrançois, Angela Tesse, Raul M. Torres, Gervaise Loirand
Endothelial cells (ECs) are components of the hematopoietic microenvironment and regulate hematopoietic stem and progenitor cell (HSPC) homeostasis. Cytokine treatments that cause HSPC trafficking to peripheral blood are associated with an increase in dipeptidylpeptidase 4/CD26 (DPP4/CD26), an enzyme that truncates the neurotransmitter neuropeptide Y (NPY). Here, we show that enzymatically altered NPY signaling in ECs caused reduced VE-cadherin and CD31 expression along EC junctions, resulting in increased vascular permeability and HSPC egress. Moreover, selective NPY2 and NPY5 receptor antagonists restored vascular integrity and limited HSPC mobilization, demonstrating that the enzymatically controlled vascular gateway specifically opens by cleavage of NPY by CD26 signaling via NPY2 and NPY5 receptors. Mice lacking CD26 or NPY exhibited impaired HSPC trafficking that was restored by treatment with truncated NPY. Thus, our results point to ECs as gatekeepers of HSPC trafficking and identify a CD26-mediated NPY axis that has potential as a pharmacologic target to regulate hematopoietic trafficking in homeostatic and stress conditions.
Pratibha Singh, Jonathan Hoggatt, Malgorzata M. Kamocka, Khalid S. Mohammad, Mary R. Saunders, Hongge Li, Jennifer Speth, Nadia Carlesso, Theresa A. Guise, Louis M. Pelus
Food allergy occurs due to IgE- and mast cell–dependent intestinal inflammation. Previously, we showed that histamine-releasing factor (HRF), a multifunctional protein secreted during allergy, interacts with a subset of IgE molecules and that the HRF dimer activates mast cells in an HRF-reactive IgE-dependent manner. In this study, we investigated whether HRF plays any role in food allergy. Specifically, we determined that prophylactic and therapeutic administration of HRF inhibitors that block HRF-IgE interactions reduces the incidence of diarrhea and mastocytosis in a murine model of food allergy. Food allergy–associated intestinal inflammation was accompanied by increased secretion of the HRF dimer into the intestine in response to proinflammatory, Th2, and epithelial-derived cytokines and HRF-reactive IgE levels at the elicitation phase. Consistent with these data, patients with egg allergy had higher blood levels of HRF-reactive IgE compared with individuals that were not hypersensitive. Successful oral immunotherapy in egg-allergy patients and food-allergic mice reduced HRF-reactive IgE levels, thereby suggesting a pathological role for HRF in food allergy. Together, these results suggest that antigen and HRF dimer amplify intestinal inflammation by synergistically activating mast cells and indicate that HRF has potential as a therapeutic target in food allergy.
Tomoaki Ando, Jun-ichi Kashiwakura, Naoka Itoh-Nagato, Hirotaka Yamashita, Minato Baba, Yu Kawakami, Shih Han Tsai, Naoki Inagaki, Kiyoshi Takeda, Tsutomu Iwata, Naoki Shimojo, Takao Fujisawa, Mizuho Nagao, Kenji Matsumoto, Yuko Kawakami, Toshiaki Kawakami
Transcriptional repression of ubiquitin B (UBB) is a cancer-subtype-specific alteration that occurs in a substantial population of patients with cancers of the female reproductive tract. UBB is 1 of 2 genes encoding for ubiquitin as a polyprotein consisting of multiple copies of ubiquitin monomers. Silencing of UBB reduces cellular UBB levels and results in an exquisite dependence on ubiquitin C (UBC), the second polyubiquitin gene. UBB is repressed in approximately 30% of high-grade serous ovarian cancer (HGSOC) patients and is a recurrent lesion in uterine carcinosarcoma and endometrial carcinoma. We identified ovarian tumor cell lines that retain UBB in a repressed state, used these cell lines to establish orthotopic ovarian tumors, and found that inducible expression of a UBC-targeting shRNA led to tumor regression, and substantial long-term survival benefit. Thus, we describe a recurrent cancer-specific lesion at the level of ubiquitin production. Moreover, these observations reveal the prognostic value of UBB repression and establish UBC as a promising therapeutic target for ovarian cancer patients with recurrent UBB silencing.
Alexia T. Kedves, Scott Gleim, Xiaoyou Liang, Dennis M. Bonal, Frederic Sigoillot, Fred Harbinski, Sneha Sanghavi, Christina Benander, Elizabeth George, Prafulla C. Gokhale, Quang-De Nguyen, Paul T. Kirschmeier, Robert J. Distel, Jeremy Jenkins, Michael S. Goldberg, William C. Forrester
The devastating sequelae of diabetes mellitus include microvascular permeability, which results in retinopathy. Despite clinical and scientific advances, there remains a need for new approaches to treat retinopathy. Here, we have presented a possible treatment strategy, whereby targeting the small GTPase ARF6 alters VEGFR2 trafficking and reverses signs of pathology in 4 animal models that represent features of diabetic retinopathy and in a fifth model of ocular pathological angiogenesis. Specifically, we determined that the same signaling pathway utilizes distinct GEFs to sequentially activate ARF6, and these GEFs exert distinct but complementary effects on VEGFR2 trafficking and signal transduction. ARF6 activation was independently regulated by 2 different ARF GEFs — ARNO and GEP100. Interaction between VEGFR2 and ARNO activated ARF6 and stimulated VEGFR2 internalization, whereas a VEGFR2 interaction with GEP100 activated ARF6 to promote VEGFR2 recycling via coreceptor binding. Intervening in either pathway inhibited VEGFR2 signal output. Finally, using a combination of in vitro, cellular, genetic, and pharmacologic techniques, we demonstrated that ARF6 is pivotal in VEGFR2 trafficking and that targeting ARF6-mediated VEGFR2 trafficking has potential as a therapeutic approach for retinal vascular diseases such as diabetic retinopathy.
Weiquan Zhu, Dallas S. Shi, Jacob M. Winter, Bianca E. Rich, Zongzhong Tong, Lise K. Sorensen, Helong Zhao, Yi Huang, Zhengfu Tai, Tara M. Mleynek, Jae Hyuk Yoo, Christine Dunn, Jing Ling, Jake A. Bergquist, Jackson R. Richards, Amanda Jiang, Lisa A. Lesniewski, M. Elizabeth Hartnett, Diane M. Ward, Alan L. Mueller, Kirill Ostanin, Kirk R. Thomas, Shannon J. Odelberg, Dean Y. Li