The fact that insulin-producing islet beta-cells are susceptible to the cytotoxic effects of inflammatory cytokines represents a potential hinderance to the use of such cells for transplantation therapy of insulin-dependent diabetes mellitus (IDDM). In the current study, we show that IL-1beta induces destruction of INS-1 insulinoma cells, while having no effect on a second insulinoma cell line RIN1046-38 and its engineered derivatives, and that this difference is correlated with a higher level of expression of manganese superoxide dismutase (MnSOD) in the latter cells. Stable overexpression of MnSOD in INS-1 cells provides complete protection against IL-1beta-mediated cytotoxicity, and also results in markedly reduced killing when such cells are exposed to conditioned media from activated human or rat PBMC. Further, overexpression of MnSOD in either RIN- or INS-1-derived lines results in a sharp reduction in IL-1beta-induced nitric oxide (NO) production, a finding that correlates with reduced levels of the inducible form of nitric oxide synthase (iNOS). Treatment of INS-1 cells with L-NMMA, an inhibitor of iNOS, provides the same degree of protection against IL-1beta or supernatants from LPS-activated rat PBMC as MnSOD overexpression, supporting the idea that MnSOD protects INS-1 cells by interfering with the normal IL-1beta-mediated increase in iNOS. Because NO and its derivatives have been implicated as critical mediators of beta-cell destruction in IDDM, we conclude that well regulated insulinoma cell lines engineered for MnSOD overexpression may be an attractive alternative to isolated islets as vehicles for insulin replacement in autoimmune diabetes.
H E Hohmeier, A Thigpen, V V Tran, R Davis, C B Newgard
We demonstrate that adenoviral-mediated gene transfer of a dominant negative rac1 gene product (N17rac1) inhibits the intracellular burst of reactive oxygen species (ROS) that occurs after reoxygenation of vascular smooth muscle cells. In contrast, expression of a dominant negative ras gene (N17ras) had no effect. Challenge of control cells and cells expressing N17rac1 with a direct oxidant stress produced an equivalent increase in intracellular ROS levels and subsequent cell death. This suggests that N17rac1 expression appears to block production of harmful oxygen radicals and does not act directly or indirectly to scavenge ROS generated during reoxygenation. Expression of N17rac1 results in protection from hypoxia/reoxygenation-induced cell death in a variety of cell types including vascular smooth muscle cells, fibroblasts, endothelial cells, and ventricular myocytes. These results suggest that reoxygenation injury requires the activation of rac proteins, and that inhibition of rac-dependent pathways may be a useful strategy for the prevention of reperfusion injury in ischemic tissues.
K S Kim, K Takeda, R Sethi, J B Pracyk, K Tanaka, Y F Zhou, Z X Yu, V J Ferrans, J T Bruder, I Kovesdi, K Irani, P Goldschmidt-Clermont, T Finkel
Chronic renal disease (CRD) is generally thought to be incurable, except through renal transplantation, and the number of patients with CRD is on the increase. Glomerulosclerosis and tubulointerstitial fibrosis represent the morphological equivalent of end-stage CRD. In this study, we demonstrated the preventive effect of hepatocyte growth factor (HGF) on the progression of renal dysfunction and fibrosis, using a spontaneous mouse model for CRD (ICGN strain). The mice progressively developed glomerular sclerotic injury, tubular atrophy, and renal dysfunction until they were 17 wk of age. When recombinant HGF was injected into these mice during a 4-wk-period (from weeks 14-17 after birth), DNA synthesis of tubular epithelial cells was found to be 4.4-fold higher than in mice without HGF injection, thereby suggesting tubular parenchymal expansion promoted by HGF. Notably, HGF suppressed the expression of transforming growth factor-beta and of platelet-derived growth factor as well as myofibroblast formation in the affected kidney. Consequently, the onset of tubulointerstitial fibrosis was almost completely inhibited by HGF, while HGF attenuated the progression of glomerulosclerosis, both leading to preventing manifestation of renal dysfunction. From our results, supplement therapy with HGF may be taken into consideration as a novel option for prevention and treatment of CRD.
S Mizuno, T Kurosawa, K Matsumoto, Y Mizuno-Horikawa, M Okamoto, T Nakamura
Bone marrow transplantation (BMT) is currently used for the treatment of a variety of neoplastic diseases. However, significant obstacles limiting the efficacy of allogeneic BMT are the occurrence of graft-versus-host disease (GvHD) and tumor relapse. Natural killer (NK) cells exert a variety of immunologic and homoeostatic functions. We examined whether adoptive transfer of activated NK cells of donor type would prevent GvHD after allogeneic BMT in mice. Lethally irradiated C57BL/6 (H-2(b)) mice, were transplanted with MHC incompatible BALB/c (H-2(d)) bone marrow cells and spleen cells and rapidly succumbed to acute GvHD. In contrast, mice that also received activated NK cells of donor type exhibited significant increases in survival. In determining the mechanism by which the NK cells prevented GvHD, mice were concurrently treated with a neutralizing antibodies to the immunosuppressive cytokine TGFbeta. Anti-TGFbeta completely abrogated the protective effects of the activated donor NK cells indicating that TGFbeta plays an important role in the prevention of GvHD by NK cells. We then examined whether activated NK cells of donor type after allogeneic BMT would induce graft-versus-tumor (GvT) effects without GvHD in mice bearing a murine colon adenocarcinoma (MCA-38). 10 d after receiving the tumor, in which the mice had demonstrable lung metastases, recipients received an allogeneic BMT with or without activated NK cells. Administration of activated NK cells resulted in significant GvT effects after allogeneic BMT as evidenced by increases in median survival and fewer lung metastasis. No evidence of GVHD was detected compared with recipients receiving spleen cells alone which also developed fewer lung metastases but in which all had succumbed to GVHD. Thus, our findings suggest that adoptive immunotherapy using activated donor NK cells combined with allogeneic BMT inhibits GvHD and promotes GvT in advanced tumor-bearing mice. These results also suggest that GvT and GvHD can be dissociable phenomena.
O Asai, D L Longo, Z G Tian, R L Hornung, D D Taub, F W Ruscetti, W J Murphy
Chronic granulomatous disease (CGD) is a rare genetic disorder in which phagocytes fail to produce superoxide because of defects in one of several components of the NADPH oxidase complex. As a result, patients develop recurrent life-threatening bacterial and fungal infections. The organisms to which CGD patients are most susceptible produce catalase, regarded as an important factor for microbial pathogenicity in CGD. To test the role of pathogen-derived catalase in CGD directly, we have generated isogenic strains of Aspergillus nidulans in which one or both of the catalase genes (catA and catB), have been deleted. We hypothesized that catalase negative mutants would be less virulent than the wild-type strain in experimental animal models. CGD mice were produced by disruption of the p47(phox) gene which encodes the 47-kD subunit of the NADPH oxidase. Wild-type A. nidulans inoculated intranasally caused fatal infection in CGD mice, but did not cause disease in wild-type littermates. Surprisingly, wild-type A. nidulans and the catA, catB, and catA/catB mutants were equally virulent in CGD mice. Histopathological studies of fatally infected CGD mice showed widely distributed lesions in the lungs regardless of the presence or absence of the catA and catB genes. Similar to the CGD model, catalase-deficient A. nidulans was highly virulent in cortisone-treated BALB/c mice. Taken together, these results indicate that catalases do not play a significant role in pathogenicity of A. nidulans in p47(phox)-/- mice, and therefore raise doubt about the central role of catalases as a fungal virulence factor in CGD.
Y C Chang, B H Segal, S M Holland, G F Miller, K J Kwon-Chung
Excessive platelet accumulation and recruitment, leading to vessel occlusion at sites of vascular injury, present major therapeutic challenges in cardiovascular medicine. Endothelial cell CD39, an ecto-enzyme with ADPase and ATPase activities, rapidly metabolizes ATP and ADP released from activated platelets, thereby abolishing recruitment. Therefore, a soluble form of CD39, retaining nucleotidase activities, would constitute a novel antithrombotic agent. We designed a recombinant, soluble form of human CD39, and isolated it from conditioned media from transiently transfected COS-1 cells and from stably transfected Chinese hamster ovary (CHO) cells. Conditioned medium from CHO cells grown under serum-free conditions was subjected to anti-CD39 immunoaffinity column chromatography, yielding a single approximately 66-kD protein with ATPase and ADPase activities. Purified soluble CD39 blocked ADP-induced platelet aggregation in vitro, and inhibited collagen-induced platelet reactivity. Kinetic analyses indicated that, while soluble CD39 had a Km for ADP of 5.9 microM and for ATP of 2.1 microM, the specificity constant kcat/Km was the same for both substrates. Intravenously administered soluble CD39 remained active in mice for an extended period of time, with an elimination phase half-life of almost 2 d. The data indicate that soluble CD39 is a potential therapeutic agent for inhibition of platelet-mediated thrombotic diatheses.
R B Gayle 3rd, C R Maliszewski, S D Gimpel, M A Schoenborn, R G Caspary, C Richards, K Brasel, V Price, J H Drosopoulos, N Islam, T N Alyonycheva, M J Broekman, A J Marcus
Enteric pathogens induce intestinal epithelium to secrete chemokines that direct movement of polymorphonuclear leukocytes. Mechanisms that might downregulate secretion of these proinflammatory chemokines and thus contain intestinal inflammation have not yet been elucidated. The antiinflammatory activities exhibited by the arachidonate metabolite lipoxin A4 (LXA4) suggests that this eicosanoid, which is biosynthesized in vivo at sites of inflammation, might play such a role. We investigated whether chemokine secretion could be regulated by stable analogs of LXA4. Monolayers of T84 intestinal epithelial cells were infected with Salmonella typhimurium, which elicits secretion of distinct apical (pathogen-elicited epithelial chemoattractant) and basolateral (IL-8) chemokines. Stable analogs of LXA4 inhibited S. typhimurium-induced (but not phorbol ester-induced) secretion of both IL-8 and pathogen-elicited epithelial chemoattractant. LXA4 stable analogs did not alter bacterial adherence to nor internalization by epithelia, indicating that LXA4 stable analogs did not block all signals that Salmonella typhimurium activates in intestinal epithelia, but likely led to attenuation of signals that mediate chemokine secretion. Inhibition of S. typhimurium-induced IL-8 secretion by LXA4 analogs was concentration- (IC50 approximately 1 nM) and time-dependent (maximal inhibition approximately 1 h). As a result of these effects, LXA4 stable analogs inhibited the ability of bacteria-infected epithelia to direct polymorphonuclear leukocyte movement. These data suggest that LXA4 and its stable analogs may be useful in downregulating active inflammation at mucosal surfaces.
A T Gewirtz, B McCormick, A S Neish, N A Petasis, K Gronert, C N Serhan, J L Madara
Diabetic states are characterized by a raised serum/islet level of long chain fatty acids and a lowered ED50 for glucose-induced insulin secretion. Prolonged culture (> 6 h) of islets with long chain fatty acids replicates the basal insulin hypersecretion. We examined this effect in rat islets cultured for 24 h with 0.25 mM oleate. Insulin secretion at 2.8 mM glucose was doubled in combination with a 60% lowered islet content of glucose-6-phosphate (G6P). Investigation of the lowered G6P showed: (a) increased glucose usage from 0.5 to 100 mM glucose with identical values measured by [2-3H]glucose and [5-3H]glucose, (c) indicating little glucose- 6-phosphatase activity, (b) unchanged low pentose phosphate shunt activity, (c) 50% increased phosphofructokinase (PFK) Vmax, (d) a normal ATP/ADP ratio, and (e) unchanged fructose 2,6 bisphosphate content. Triacsin C, an inhibitor of fatty acyl-CoA synthetase, prevented the increase in PFK activity and the lowered G6P content. These results suggest that long chain acyl-CoA mediates the rise in PFK activity, which in turn lowers the G6P level. We speculate that the inhibition of hexokinase by G6P is thus attenuated, thereby causing the basal insulin hypersecretion.
Y Q Liu, K Tornheim, J L Leahy
The CC chemokines MIP-1alpha, MIP-1beta, and RANTES suppress replication of certain HIV-1 strains in cultured PBMC and T cell lines by blocking interaction of gp120 with CC chemokine receptor 5 (CCR5). However, the same chemokines can enhance HIV-1 replication in cultured macrophages. The net effect of chemokines on HIV-1 infection in intact lymphoid tissue, the major reservoir of HIV-1 in vivo, is unknown and unpredictable since the tissue contains both T lymphocytes and macrophages. Here we show that exogenous MIP-1alpha, MIP-1beta, and RANTES markedly suppressed replication of CCR5-tropic HIV-1 strains in blocks of human lymphoid tissue infected ex vivo. Moreover, endogenous MIP-1alpha, MIP-1beta, and RANTES were upregulated in tissues infected ex vivo with CXC chemokine receptor 4-tropic but not CCR5-tropic HIV-1. Such an upregulation may contribute to the virus phenotype shift in the course of HIV disease in vivo.
L B Margolis, S Glushakova, J C Grivel, P M Murphy
The GM2 gangliosidoses are a group of severe, neurodegenerative conditions that include Tay-Sachs disease, Sandhoff disease, and the GM2 activator deficiency. Bone marrow transplantation (BMT) was examined as a potential treatment for these disorders using a Sandhoff disease mouse model. BMT extended the life span of these mice from approximately 4.5 mo to up to 8 mo and slowed their neurologic deterioration. BMT also corrected biochemical deficiencies in somatic tissues as indicated by decreased excretion of urinary oligosaccharides, and lower glycolipid storage and increased levels of beta-hexosaminidase activity in visceral organs. Even with neurologic improvement, neither clear reduction of brain glycolipid storage nor improvement in neuronal pathology could be detected, suggesting a complex pathogenic mechanism. Histological analysis revealed beta-hexosaminidase-positive cells in the central nervous system and visceral organs with a concomitant reduction of colloidal iron-positive macrophages. These results may be important for the design of treatment approaches for the GM2 gangliosidoses.
F Norflus, C J Tifft, M P McDonald, G Goldstein, J N Crawley, A Hoffmann, K Sandhoff, K Suzuki, R L Proia
Migration of smooth muscle cells (SMCs) and collagen synthesis by SMCs are central to the pathophysiology of vascular disease. Both processes can be induced shortly after vascular injury; however, a functional relationship between them has not been established. In this study, we determined if collagen synthesis was required for SMC migration, using ethyl-3,4-dihydroxybenzoate (EDHB), an inhibitor of prolyl-4-hydroxylase, and 3,4-DL-dehydroproline (DHP), a proline analogue, which we demonstrate inhibit collagen elaboration by porcine arterial SMCs. SMCs exposed to EDHB or DHP attached normally to collagen- and vitronectin-coated substrates; however, spreading on collagen but not vitronectin was inhibited. SMC migration speed, quantified by digital time-lapse video microscopy, was significantly and reversibly reduced by EDHB and DHP. Flow cytometry revealed that expression of beta1 integrins, through which SMCs interact with collagen, was unaffected by EDHB or DHP. However, both inhibitors prevented normal clustering of beta1 integrins on the surface of SMCs, consistent with a lack of appropriate matrix ligands for integrin engagement. Moreover, there was impaired recruitment of vinculin into focal adhesion complexes of spreading SMCs and disassembly of the smooth muscle alpha-actin-containing cytoskeleton. These findings suggest that de novo collagen synthesis plays a role in SMC migration and implicates a mechanism whereby newly synthesized collagen may be necessary to maintain the transcellular traction system required for effective locomotion.
E F Rocnik, B M Chan, J G Pickering
The role of the vascular endothelium in activation of the coagulation system, a fundamental homeostatic mechanism of mammalian biology, is uncertain because there is little evidence indicating that endothelial cells in vivo express tissue factor (TF), the system's triggering mechanism. As a surrogate for vessel wall endothelium, we examined circulating endothelial cells (CEC) from normals and patients with sickle cell anemia, a disease associated with activation of coagulation. We find that sickle CEC abnormally express TF antigen (expressed as percent CEC that are TF-positive), with 66+/-13% positive in sickle patients in steady-state, 83+/-19% positive in sickle patients presenting with acute vasoocclusive episodes, and only 10+/-13% positive in normal controls. Repeated samplings confirmed this impression that TF expression is greater when sickle patients develop acute vasoocclusive episodes. Sickle CEC are also positive for TF mRNA, with excellent concurrence between antigen and mRNA expression. The TF expressed on the antigen-positive CEC is functional, as demonstrated by a binding assay for Factor VIIa and a chromogenic assay sensitive to generation of Factor Xa. By establishing that endothelial cells in vivo can express TF, these data imply that the vast endothelial surface area does provide an important pathophysiologic trigger for coagulation activation.
A Solovey, L Gui, N S Key, R P Hebbel
We addressed the role of hyperglycemia in leukocyte-endothelium interaction under flow conditions by exposing human umbilical vein endothelial cells for 24 h to normal (5 mM), high concentration of glucose (30 mM), advanced glycosylation end product-albumin (100 microg/ml), or hyperglycemic (174-316 mg/dl) sera from patients with diabetes and abnormal hemoglobin A1c (8.1+/-1.4%). At the end of incubation endothelial cells were perfused with total leukocyte suspension in a parallel plate flow chamber under laminar flow (1.5 dyn/cm2). Rolling and adherent cells were evaluated by digital image processing. Results showed that 30 mM glucose significantly (P < 0. 01) increased the number of adherent leukocytes to endothelial cells in respect to control (5 mM glucose; 151+/-19 versus 33+/-8 cells/mm2). A similar response was induced by endothelial stimulation with IL-1beta, here used as positive control (195+/-20 cells/mm2). The number of rolling cells on endothelial surface was not affected by high glucose level. Stable adhesion of leukocytes to glucose-treated as well as to IL-1beta-stimulated endothelial cells was preceded by short interaction of leukocytes with the endothelial surface. The distance travelled by leukocytes before arrest on 30 mM glucose, or on IL-1beta-treated endothelial cells, was significantly (P < 0.01) higher than that observed for leukocytes adhering on control endothelium (30 mM glucose: 76.7+/-3.5; IL1beta: 69.7+/-4 versus 5 mM glucose: 21.5+/-5 microm). Functional blocking of E-selectin, intercellular cell adhesion molecule-1, and vascular cell adhesion molecule-1 on endothelial cells with the corresponding mouse mAb significantly inhibited glucose-induced increase in leukocyte adhesion (67+/-16, 83+/-12, 62+/-8 versus 144+/-21 cells/ mm2). Confocal fluorescence microscopy studies showed that 30 mM glucose induced an increase in endothelial surface expression of E-selectin, intercellular cell adhesion molecule-1, and vascular cell adhesion molecule-1. Electrophoretic mobility shift assay of nuclear extracts of human umbilical vein endothelial cells (HUVEC) exposed for 1 h to 30 mM glucose revealed an intense NF-kB activation. Treatment of HUVEC exposed to high glucose with the NF-kB inhibitors pyrrolidinedithiocarbamate (100 microM) and tosyl-phe-chloromethylketone (25 microM) significantly reduced (P < 0.05) leukocyte adhesion in respect to HUVEC treated with glucose alone. A significant (P < 0.01) inhibitory effect on glucose-induced leukocyte adhesion was observed after blocking protein kinase C activity with staurosporine (5 nM). When HUVEC were treated with specific antisense oligodesoxynucleotides against PKCalpha and PKCepsilon isoforms before the addition of 30 mM glucose, a significant (P < 0.05) reduction in the adhesion was also seen. Advanced glycosylation end product-albumin significantly increased the number of adhering leukocytes in respect to native albumin used as control (110+/-16 versus 66+/-7, P < 0.01). Sera from diabetic patients significantly (P < 0.01) enhanced leukocyte adhesion as compared with controls, despite normal levels of IL-1beta and TNFalpha in these sera. These data indicate that high glucose concentration and hyperglycemia promote leukocyte adhesion to the endothelium through upregulation of cell surface expression of adhesive proteins, possibly depending on NF-kB activation.
M Morigi, S Angioletti, B Imberti, R Donadelli, G Micheletti, M Figliuzzi, A Remuzzi, C Zoja, G Remuzzi
Inotropic and chronotropic responses to catecholamines in young adult transgenic mice overexpressing myocardial Gsalpha are enhanced. One might predict that over the life of the animal, this chronically enhanced beta-adrenergic receptor stimulation would result in homologous catecholamine desensitization. To test this hypothesis, old transgenic Gsalpha mice and age-matched controls were studied physiologically in terms of responsiveness of left ventricular function (ejection fraction) to isoproterenol in vivo and in vitro in terms of beta-adrenergic receptor signaling. Old transgenic mice still responded to isoproterenol with augmented (P < 0.05) left ventricular ejection fraction (+44+/-3%) compared with age-matched controls (+24+/-1%). Although total beta-adrenergic receptor density was reduced in the old transgenic mice, and G protein receptor kinase 2 (beta-adrenergic receptor kinase) levels were increased, the fraction of receptors binding agonist with high affinity as well as isoproterenol- and G protein-stimulated adenylyl cyclase activities were enhanced. Thus, classical catecholamine desensitization is not effective in attenuation of persistently enhanced responses to sympathetic stimulation in mice overexpressing myocardial Gsalpha. To support this conclusion further, experiments were performed with chronic isoproterenol, which elicited effective desensitization in wild-type controls, but failed to elicit desensitization in overexpressed Gsalpha mice. The results of this study suggest that the lack of protective desensitization mechanisms may be responsible in part for the dilated cardiomyopathy which develops with chronic sympathetic stress over the life of these animals.
D E Vatner, K Asai, M Iwase, Y Ishikawa, T E Wagner, R P Shannon, C J Homcy, S F Vatner
Multiple sclerosis (MS) is characterized by intra-blood-brain barrier immunoglobulin synthesis that persists lifelong. Subcellular fractionation and two-dimensional electrophoresis were used in conjunction with immune precipitation and immunoblotting to identify antigenic determinants for this immunoglobulin. We report that 2', 3'-cyclic nucleotide 3'-phosphodiesterase (CNP), a protein associated with oligodendrocyte/myelin membranes, also present in lymphocytes and retina, is one major target for the humoral response. Antibodies to CNP are detected in sera of 74% of MS patients. The antibodies are IgM and are present in serum in high titer as well as in cerebrospinal fluid. The antibody response is temporally persistent, consistent with systemic immune activation and persistent antigenic stimulation. Moreover, CNP is isolated as an immune complex from MS brain. CNP is expressed as two isoforms, with CNPII identical to CNPI but with a 20-amino acid extension at the amino terminus of CNPII; however, the antibody response is exclusively restricted to CNPI. In contrast, both isoforms bind the C3 complement, providing a plausible mechanism in MS central nervous system (CNS) for opsonization of myelin membrane CNP, mediated via the C3 receptor, and phagocytosis of CNP-Ig immune complexes, mediated by membrane Ig Fc receptors of macrophages and CNS microglia.
M J Walsh, J M Murray
The composition of cytoplasmic vacuoles containing the agent of Human Granulocytic Ehrlichiosis (HGE) was studied to investigate how this pathogen exists within infected host cells. Electron microscopy demonstrated that the HGE organism resides in a membrane-bound compartment within HL-60 cells: early forms of the HGE agent have a round reticular appearance while later structures are small and dense. Vacuoles containing HGE bacteria incorporated endocytosed colloidal gold particles, suggesting that they are part of the endocytic pathway. Antibodies directed to the mannose-6-phosphate receptor labeled vacuole membranes. Antibodies to the transferrin receptor and to the lysosomal membrane glycoprotein LAMP 1 did not. Moreover, 3-(2,4-dinitroanilino)-3'-amino-N-methyldipropylamine, which normally accumulates in compartments with low pH, was not present inside these vacuoles. These results suggest that vacuoles containing the agent of HGE fail to mature into phagolysosomes. We conclude that the agent of HGE appears to enter and modify part of the endocytic pathway.
P Webster, J W IJdo, L M Chicoine, E Fikrig
Loss of sex steroids causes an increase in both the resorption and formation of bone, with the former exceeding the latter. Based on evidence that the increased bone resorption after estrogen loss is due to an increase in osteoclastogenesis, we hypothesized that estrogen loss also stimulates osteoblastogenesis. We report that the number of mesenchymal osteoblast progenitors in the murine bone marrow was increased two- to threefold between 2 and 8 wk after ovariectomy and returned to control levels by 16 wk. Circulating osteocalcin, as well as osteoclastogenesis and the rate of bone loss, followed a very similar temporal pattern. Inhibition of bone resorption by administration of the bisphosphonate alendronate led to a decrease of the absolute number of osteoblast progenitors; however, it did not influence the stimulating effect of ovariectomy on osteoblastogenesis or osteoclastogenesis. These observations indicate that the increased bone formation that follows loss of estrogen can be explained, at least in part, by an increase in osteoblastogenesis. Moreover, they strongly suggest that unlike normal bone remodeling, whereby osteoblast development is stimulated by factors released from the bone matrix during osteoclastic resorption, estrogen deficiency unleashes signals that can stimulate the differentiation of osteoblast progenitors in a fashion that is autonomous from the need created by bone resorption, and therefore, inappropriate.
R L Jilka, K Takahashi, M Munshi, D C Williams, P K Roberson, S C Manolagas
Lupus anticoagulant (LAC) is associated with arterial and venous thrombosis, thrombocytopenia, and recurrent fetal loss. We have reported previously that plasma with LAC activity induces apoptosis in endothelial cells and binds annexin V (Nakamura, N., Y. Shidara, N. Kawaguchi, C. Azuma, N. Mitsuda, S. Onishi, K. Yamaji, and Y. Wada. 1994. Biochem. Biophys. Res. Commun. 205:1488-1493). In this study, we separated two IgG antibody fractions, one with and one without affinity for annexin V, from 10 patients with LAC. LAC and apoptotic activities were localized in the annexin V-binding fraction in all 10 patients. DNA fragmentation was dose-dependent, paralleling the amount of IgG added to the human umbilical vein endothelial cell culture medium, and was inhibited by preincubation with annexin V. Removal of the antiphospholipid antibodies from patient IgG with phospholipid liposomes did not abolish the apoptosis-inducing activities or binding to annexin V. These results imply that patients with LAC often have antibodies that do not bind phospholipids and are responsible for the induction of apoptosis in endothelial cells.
N Nakamura, T Ban, K Yamaji, Y Yoneda, Y Wada
Concanavalin A (Con A) injection into mice leads to immune-mediated liver injury. We studied whether after Con A-induced liver injury, TNF- and IL-6-dependent signaling pathways known to be related to hepatocyte proliferation are activated. 2 h after Con A injection, maximum TNF-alpha, and after 4-8 h, maximum IL-6 serum levels were found. The rise in aminotransferases and DNA fragmentation started after 4 h; maximum levels were evident after 8 h. 5-Bromo-2'-deoxyuridine staining and nuclear cyclin A expression as markers of the S-phase were first detected in hepatocyte nuclei after 24 h, peaking after 48 h. An increase in TNF-dependent nuclear expression of CCAAT/enhancer-binding protein-beta (C/EBP-beta)/liver-enriched activating protein (LAP) was detected after 1 h, whereas an increase in RNA expression was evident only after 4 h. C/EBP-beta/LAP expression returned to normal values before progression into the S-phase. DNA binding of signal transducer and activator of transcription (STAT) 3/acute phase response factor (APRF) increased for up to 8 h. As found by supershift experiments, in addition to STAT3/APRF, STAT1 also binds to the same sequence. During the course of time gel shift experiments, DNA binding of the apoptosis-related STAT1 started earlier than DNA binding of STAT3/APRF, which regulates hepatocyte proliferation. However, the subsequent decrease in DNA binding of both factors was comparable. This study demonstrates that after Con A injection, TNF- and IL-6- dependent signals trigger nuclear events regulating hepatocyte apoptosis and proliferation during liver injury.
C Trautwein, T Rakemann, N P Malek, J Plümpe, G Tiegs, M P Manns
Acute lung injury is a frequent and treatment-limiting consequence of therapy with hyperoxic gas mixtures. To determine if IL-11 is protective in oxygen toxicity, we compared the effects of 100% O2 on transgenic mice that overexpress IL-11 in the lung and transgene (-) controls. IL-11 markedly enhanced survival in 100% O2 with 100% of transgene (-) animals dying within 72-96 h and > 90% of transgene (+) animals surviving for more than 10 d. This protection was associated with markedly diminished alveolar-capillary protein leak, endothelial and epithelial membrane injury, lipid peroxidation, and pulmonary neutrophil recruitment. Significant differences in copper zinc superoxide dismutase and catalase activities were not noted and the levels of total, reduced and oxidized glutathione were similar in transgene (+) and (-) animals. Glutathione reductase, glutathione peroxidase, and manganese superoxide dismutase activities were slightly higher in transgene (+) as versus (-) mice after 100% O2 exposure, and IL-11 diminished hyperoxia-induced expression of IL-1 and TNF. Hyperoxia also caused cell death with DNA fragmentation in the lungs of transgene (-) animals and IL-11 markedly diminished this cell death response. These studies demonstrate that IL-11 markedly diminishes hyperoxic lung injury. They also demonstrate this protection is associated with small changes in lung antioxidants, diminished hyperoxia-induced IL-1 and TNF production, and markedly suppressed hyperoxia-induced DNA fragmentation.
A B Waxman, O Einarsson, T Seres, R G Knickelbein, J B Warshaw, R Johnston, R J Homer, J A Elias
The activity of the coagulation system is regulated, in part, by the interaction of thrombin with the endothelial cell receptor thrombomodulin with subsequent generation of activated protein C and suppression of thrombin production. Our previous investigation demonstrated that ablation of the thrombomodulin gene in mice causes embryonic lethality before the assembly of a functional cardiovascular system, indicating a critical role for the receptor in early development. In the current study, we show that a single amino acid substitution in thrombomodulin dissociates the developmental function of the receptor from its role as a regulator of blood coagulation. Homozygous mutant mice with severely reduced capacity to generate activated protein C or inhibit thrombin develop to term, and possess normal reproductive performance. The above animals exhibit increased fibrin deposition in selected organs, which implies tissue specific regulation of the coagulation system that is supported by further evidence from the examination of mice with defects in fibrinolysis. The thrombomodulin-deficient animals provide a murine model to examine known or identify unknown genetic and environmental factors that lead to the development of thrombosis.
H Weiler-Guettler, P D Christie, D L Beeler, A M Healy, W W Hancock, H Rayburn, J M Edelberg, R D Rosenberg
Programmed cell death (apoptosis) is a normal process in the developing nervous system. Recent data suggest that certain features seen in the process of programmed cell death may be favored in the developing versus the adult brain in response to different brain injuries. In a well characterized model of neonatal hypoxia-ischemia, we demonstrate marked but delayed cell death in which there is prominent DNA laddering, TUNEL-labeling, and nuclei with condensed chromatin. Caspase activation, which is required in many cases of apoptotic cell death, also followed a delayed time course after hypoxia-ischemia. Administration of boc-aspartyl(OMe)-fluoromethylketone, a pan-caspase inhibitor, was significantly neuroprotective when given by intracerebroventricular injection 3 h after cerebral hypoxia-ischemia. In addition, systemic injections of boc-aspartyl(OMe)-fluoromethylketone also given in a delayed fashion, resulted in significant neuroprotection. These findings suggest that caspase inhibitors may be able to provide benefit over a prolonged therapeutic window after hypoxic-ischemic events in the developing brain, a major contributor to static encephalopathy and cerebral palsy.
Y Cheng, M Deshmukh, A D'Costa, J A Demaro, J M Gidday, A Shah, Y Sun, M F Jacquin, E M Johnson, D M Holtzman
We have investigated the response of amino acid transport and protein synthesis in healthy elderly individuals (age 71+/-2 yr) to the stimulatory effect of increased amino acid availability. Muscle protein synthesis and breakdown, and amino acid transport were measured in the postabsorptive state and during the intravenous infusion of an amino acid mixture. Muscle-free amino acid kinetics were calculated by means of a three compartment model using data obtained by femoral arterio-venous catheterization and muscle biopsies from the vastus lateralis during the infusion of stable isotope tracers of amino acids. In addition, muscle protein fractional synthetic rate (FSR) was measured. Peripheral amino acid infusion significantly increased amino acid delivery to the leg, amino acid transport, and muscle protein synthesis when measured either with the three compartment model (P < 0.05) or with the traditional precursor-product approach (FSR increased from 0. 0474+/-0.0054 to 0.0940+/-0.0143%/h, P < 0.05). Because protein breakdown did not change during amino acid infusion, a positive net balance of amino acids across the muscle was achieved. We conclude that, although muscle mass is decreased in the elderly, muscle protein anabolism can nonetheless be stimulated by increased amino acid availability. We thus hypothesize that muscle mass could be better maintained with an increased intake of protein or amino acids.
E Volpi, A A Ferrando, C W Yeckel, K D Tipton, R R Wolfe
To address the question of how many distinct parasites are injected when a mosquito bites, we have characterized isolates resulting most probably from a single sporozoite inoculum. We describe the direct and immediate cloning on hepatocyte feeder layers of a Thai and an African Plasmodium falciparum primary isolate and the characterization of 67 independent clones by four techniques totaling nine different markers. This led to three main conclusions: (a) both the phenotypic and genotypic markers revealed an unexpectedly large degree of diversity within the clones from a single isolate; (b) the clones are nonetheless genetically related; and (c) a single mosquito inoculum would most likely be sufficient to generate considerable isolate complexity in the absence of repeated exposure. This diversity, which has been greatly underestimated in previous studies, does not bode well for the development of successful malaria control means.
P Druilhe, P Daubersies, J Patarapotikul, C Gentil, L Chene, T Chongsuphajaisiddhi, S Mellouk, G Langsley
Chemokines are widely hypothesized to stimulate firm adhesion of leukocytes on endothelium in shear flow. Thus far, this has been demonstrated experimentally for exogenously added chemoattractants, but not for those released by endothelium. We found that human umbilical cord endothelial cells (HUVEC) stimulated with TNF-alpha and IFN-gamma secreted eosinophil chemoattractants into the culture supernatant. This material induced transendothelial chemotaxis, stimulated eosinophil binding to purified intercellular adhesion molecule 1, and augmented binding to purified vascular cell adhesion molecule 1 in a 3-min static assay. Chemotaxis and stimulation of adhesion were abrogated completely by the pretreatment of eosinophils with an mAb to the C-C chemokine receptor 3 (CCR3). Eosinophils accumulated efficiently on HUVEC stimulated with TNF-alpha and IFN-gamma in shear flow at 1.5 dyn/cm2. CCR3 mAb slightly but significantly reduced eosinophil arrest and accumulation, by preventing development of firm adhesion by some of the tethered eosinophils, so that they detached within 30 s after the initial tethering. In the presence of mAb to the alpha4 integrin subunit, the effect of CCR3 mAb was more prominent, and approximately half of eosinophil arrest and accumulation was abolished. Inhibition by CCR3 mAb in the presence of beta2 integrin mAb was similar to that in control eosinophils. This is the first evidence that endothelial cell-derived chemokines can activate firm adhesion through alpha4 and beta2 integrins even in the presence of shear flow.
J Kitayama, C R Mackay, P D Ponath, T A Springer