We and others have suggested that insulin predominantly acts indirectly to inhibit hepatic glucose production (HGP) via suppression of gluconeogenic precursors, FFAs, and glucagon. To test that hypothesis, we performed high-dose hyperinsulinemic-euglycemic clamps using [3-3H]-glucose in liver-specific insulin receptor knockout (LIRKO) mice, LIRKO mice treated with streptozotocin (LIRKO+STZ), and controls. In LIRKO mice, fasted glucose was normal, but insulin levels were elevated tenfold. STZ treatment reduced insulinemia by 60% with resulting hyperglycemia. Interestingly, basal HGP was similar in all three groups. During the clamp, HGP was suppressed by 82 ± 17% in controls, but was not suppressed in either LIRKO or LIRKO+STZ mice. Glucose infusion and utilization were impaired (∼50%) in LIRKO and LIRKO+STZ mice versus controls. Insulin suppressed FFAs similarly in all groups (∼46%). Glucagon was not significantly suppressed during the clamp. Thus, in LIRKO mice, (a) high-dose insulin fails to suppress HGP indicating that both direct and indirect effects of insulin require an intact insulin-signaling pathway in the liver; (b) primary hepatic insulin resistance leads to hyperinsulinemia and secondary extrahepatic insulin resistance; and (c) lowering insulin levels with STZ tended to improve extrahepatic insulin sensitivity but failed to reveal the previously postulated indirect role of insulin in suppressing HGP.
Simon J. Fisher, C. Ronald Kahn
The Editorial Board will only consider comments that are deemed relevant and of interest to readers. The Journal will not post data that have not been subjected to peer review; or a comment that is essentially a reiteration of another comment.