Protection of the brain from viral infections involves the type I IFN (IFN-I) system, defects in which render humans susceptible to herpes simplex encephalitis (HSE). However, excessive cerebral IFN-I levels lead to pathologies, suggesting the need for tight regulation of responses. Based on data from mouse models, human HSE cases, and primary cell culture systems, we showed that microglia and other immune cells undergo apoptosis in the HSV-1–infected brain through a mechanism dependent on the cyclic GMP-AMP synthase/stimulator of interferon genes (cGAS/STING) pathway, but independent of IFN-I. HSV-1 infection of microglia induced cGAS-dependent apoptosis at high viral doses, whereas lower viral doses led to IFN-I responses. Importantly, inhibition of caspase activity prevented microglial cell death and augmented IFN-I responses. Accordingly, HSV-1–infected organotypic brain slices or mice treated with a caspase inhibitor exhibited lower viral load and an improved infection outcome. Collectively, we identify an activation-induced apoptosis program in brain immune cells that downmodulates local immune responses.
Line S. Reinert, Ahmad S. Rashidi, Diana N. Tran, Georgios Katzilieris-Petras, Astrid K. Hvidt, Mette Gohr, Stefanie Fruhwürth, Chiranjeevi Bodda, Martin K. Thomsen, Mikkel H. Vendelbo, Ahmad R. Khan, Brian Hansen, Petra Bergström, Lotta Agholme, Trine H. Mogensen, Maria H. Christensen, Jens R. Nyengaard, Ganes C. Sen, Henrik Zetterberg, Georges MGM Verjans, Søren R. Paludan
The Editorial Board will only consider comments that are deemed relevant and of interest to readers. The Journal will not post data that have not been subjected to peer review; or a comment that is essentially a reiteration of another comment.